Search Results

You are looking at 11 - 20 of 21 items for

  • Author or Editor: L. Jia x
  • All content x
Clear All Modify Search
Karin van der Wiel, Sarah B. Kapnick, Gabriel A. Vecchi, William F Cooke, Thomas L. Delworth, Liwei Jia, Hiroyuki Murakami, Seth Underwood, and Fanrong Zeng

Abstract

Precipitation extremes have a widespread impact on societies and ecosystems; it is therefore important to understand current and future patterns of extreme precipitation. Here, a set of new global coupled climate models with varying atmospheric resolution has been used to investigate the ability of these models to reproduce observed patterns of precipitation extremes and to investigate changes in these extremes in response to increased atmospheric CO2 concentrations. The atmospheric resolution was increased from 2° × 2° grid cells (typical resolution in the CMIP5 archive) to 0.25° × 0.25° (tropical cyclone permitting). Analysis has been confined to the contiguous United States (CONUS). It is shown that, for these models, integrating at higher atmospheric resolution improves all aspects of simulated extreme precipitation: spatial patterns, intensities, and seasonal timing. In response to 2 × CO2 concentrations, all models show a mean intensification of precipitation rates during extreme events of approximately 3%–4% K−1. However, projected regional patterns of changes in extremes are dependent on model resolution. For example, the highest-resolution models show increased precipitation rates during extreme events in the hurricane season in the U.S. Southeast; this increase is not found in the low-resolution model. These results emphasize that, for the study of extreme precipitation there is a minimum model resolution that is needed to capture the weather phenomena generating the extremes. Finally, the observed record and historical model experiments were used to investigate changes in the recent past. In part because of large intrinsic variability, no evidence was found for changes in extreme precipitation attributable to climate change in the available observed record.

Full access
Hiroyuki Murakami, Gabriel A. Vecchi, Thomas L. Delworth, Andrew T. Wittenberg, Seth Underwood, Richard Gudgel, Xiaosong Yang, Liwei Jia, Fanrong Zeng, Karen Paffendorf, and Wei Zhang

Abstract

The 2015 hurricane season in the eastern and central Pacific Ocean (EPO and CPO), particularly around Hawaii, was extremely active, including a record number of tropical cyclones (TCs) and the first instance of three simultaneous category-4 hurricanes in the EPO and CPO. A strong El Niño developed during the 2015 boreal summer season and was attributed by some to be the cause of the extreme number of TCs. However, according to a suite of targeted high-resolution model experiments, the extreme 2015 EPO and CPO hurricane season was not primarily induced by the 2015 El Niño tropical Pacific warming, but by warming in the subtropical Pacific Ocean. This warming is not typical of El Niño, but rather of the Pacific meridional mode (PMM) superimposed on long-term anthropogenic warming. Although the likelihood of such an extreme year depends on the phase of natural variability, the coupled GCM projects an increase in the frequency of such extremely active TC years over the next few decades for EPO, CPO, and Hawaii as a result of enhanced subtropical Pacific warming from anthropogenic greenhouse gas forcing.

Full access
Wei Zhang, Gabriel A. Vecchi, Hiroyuki Murakami, Thomas L. Delworth, Karen Paffendorf, Liwei Jia, Gabriele Villarini, Rich Gudgel, Fanrong Zeng, and Xiaosong Yang
Full access
Liwei Jia, Gabriel A. Vecchi, Xiaosong Yang, Richard G. Gudgel, Thomas L. Delworth, William F. Stern, Karen Paffendorf, Seth D. Underwood, and Fanrong Zeng

Abstract

This study investigates the roles of radiative forcing, sea surface temperatures (SSTs), and atmospheric and land initial conditions in the summer warming episodes of the United States. The summer warming episodes are defined as the significantly above-normal (1983–2012) June–August 2-m temperature anomalies and are referred to as heat waves in this study. Two contrasting cases, the summers of 2006 and 2012, are explored in detail to illustrate the distinct roles of SSTs, direct radiative forcing, and atmospheric and land initial conditions in driving U.S. summer heat waves. For 2012, simulations with the GFDL atmospheric general circulation model reveal that SSTs play a critical role. Further sensitivity experiments reveal the contributions of uniform global SST warming, SSTs in individual ocean basins, and direct radiative forcing to the geographic distribution and magnitudes of warm temperature anomalies. In contrast, for 2006, the atmospheric and land initial conditions are the key drivers. The atmospheric (land) initial conditions play a major (minor) role in the central and northwestern (eastern) United States. Because of changes in radiative forcing, the probability of areal-averaged summer temperature anomalies over the United States exceeding the observed 2012 anomaly increases with time over the early twenty-first century. La Niña (El Niño) events tend to increase (reduce) the occurrence rate of heat waves. The temperatures over the central United States are mostly influenced by El Niño/La Niña, with the central tropical Pacific playing a more important role than the eastern tropical Pacific. Thus, atmospheric and land initial conditions, SSTs, and radiative forcing are all important drivers of and sources of predictability for U.S. summer heat waves.

Full access
Liwei Jia, Xiaosong Yang, Gabriel A. Vecchi, Richard G. Gudgel, Thomas L. Delworth, Anthony Rosati, William F. Stern, Andrew T. Wittenberg, Lakshmi Krishnamurthy, Shaoqing Zhang, Rym Msadek, Sarah Kapnick, Seth Underwood, Fanrong Zeng, Whit G. Anderson, Venkatramani Balaji, and Keith Dixon

Abstract

This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Niño-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable components of temperature are characterized by a component that is likely due to changes in external radiative forcing in boreal winter and summer and an ENSO-related pattern in boreal winter. The most predictable components of precipitation in both seasons are very likely ENSO-related. These components of temperature and precipitation can be predicted with significant correlation skill at least 9 months in advance. The reconstructed predictions using only the first few predictable components from the model show considerably better skill relative to observations than raw model predictions. This study shows that the use of refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal predictions of 2-m air temperature and precipitation over land.

Full access
Leon D. Rotstayn, Emily L. Plymin, Mark A. Collier, Olivier Boucher, Jean-Louis Dufresne, Jing-Jia Luo, Knut von Salzen, Stephen J. Jeffrey, Marie-Alice Foujols, Yi Ming, and Larry W. Horowitz

Abstract

The effects of declining anthropogenic aerosols in representative concentration pathway 4.5 (RCP4.5) are assessed in four models from phase 5 the Coupled Model Intercomparison Project (CMIP5), with a focus on annual, zonal-mean atmospheric temperature structure and zonal winds. For each model, the effect of declining aerosols is diagnosed from the difference between a projection forced by RCP4.5 for 2006–2100 and another that has identical forcing, except that anthropogenic aerosols are fixed at early twenty-first-century levels. The response to declining aerosols is interpreted in terms of the meridional structure of aerosol radiative forcing, which peaks near 40°N and vanishes at the South Pole.

Increasing greenhouse gases cause amplified warming in the tropical upper troposphere and strengthening midlatitude jets in both hemispheres. However, for declining aerosols the vertically averaged tropospheric temperature response peaks near 40°N, rather than in the tropics. This implies that for declining aerosols the tropospheric meridional temperature gradient generally increases in the Southern Hemisphere (SH), but in the Northern Hemisphere (NH) it decreases in the tropics and subtropics. Consistent with thermal wind balance, the NH jet then strengthens on its poleward side and weakens on its equatorward side, whereas the SH jet strengthens more than the NH jet. The asymmetric response of the jets is thus consistent with the meridional structure of aerosol radiative forcing and the associated tropospheric warming: in the NH the latitude of maximum warming is roughly collocated with the jet, whereas in the SH warming is strongest in the tropics and weakest at high latitudes.

Full access
Xiaosong Yang, Gabriel A. Vecchi, Rich G. Gudgel, Thomas L. Delworth, Shaoqing Zhang, Anthony Rosati, Liwei Jia, William F. Stern, Andrew T. Wittenberg, Sarah Kapnick, Rym Msadek, Seth D. Underwood, Fanrong Zeng, Whit Anderson, and Venkatramani Balaji

Abstract

The seasonal predictability of extratropical storm tracks in the Geophysical Fluid Dynamics Laboratory’s (GFDL)’s high-resolution climate model has been investigated using an average predictability time analysis. The leading predictable components of extratropical storm tracks are the ENSO-related spatial patterns for both boreal winter and summer, and the second predictable components are mostly due to changes in external radiative forcing and multidecadal oceanic variability. These two predictable components for both seasons show significant correlation skill for all leads from 0 to 9 months, while the skill of predicting the boreal winter storm track is consistently higher than that of the austral winter. The predictable components of extratropical storm tracks are dynamically consistent with the predictable components of the upper troposphere jet flow for both seasons. Over the region with strong storm-track signals in North America, the model is able to predict the changes in statistics of extremes connected to storm-track changes (e.g., extreme low and high sea level pressure and extreme 2-m air temperature) in response to different ENSO phases. These results point toward the possibility of providing skillful seasonal predictions of the statistics of extratropical extremes over land using high-resolution coupled models.

Full access
G. A. Vecchi, T. Delworth, R. Gudgel, S. Kapnick, A. Rosati, A. T. Wittenberg, F. Zeng, W. Anderson, V. Balaji, K. Dixon, L. Jia, H.-S. Kim, L. Krishnamurthy, R. Msadek, W. F. Stern, S. D. Underwood, G. Villarini, X. Yang, and S. Zhang

Abstract

Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.

Full access
Hanqin Tian, Jia Yang, Chaoqun Lu, Rongting Xu, Josep G. Canadell, Robert B. Jackson, Almut Arneth, Jinfeng Chang, Guangsheng Chen, Philippe Ciais, Stefan Gerber, Akihiko Ito, Yuanyuan Huang, Fortunat Joos, Sebastian Lienert, Palmira Messina, Stefan Olin, Shufen Pan, Changhui Peng, Eri Saikawa, Rona L. Thompson, Nicolas Vuichard, Wilfried Winiwarter, Sönke Zaehle, Bowen Zhang, Kerou Zhang, and Qiuan Zhu

Abstract

Nitrous oxide (N2O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N2O fluxes and the key drivers of N2O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N2O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N2O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N2O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N2O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N2O dynamics; and 3) provide a benchmarking estimate of N2O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N2O estimation derived from the NMIP is a key component of the global N2O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.

Open access
Jielun Sun, Steven P. Oncley, Sean P. Burns, Britton B. Stephens, Donald H. Lenschow, Teresa Campos, Russell K. Monson, David S. Schimel, William J. Sacks, Stephan F. J. De Wekker, Chun-Ta Lai, Brian Lamb, Dennis Ojima, Patrick Z. Ellsworth, Leonel S. L. Sternberg, Sharon Zhong, Craig Clements, David J. P. Moore, Dean E. Anderson, Andrew S. Watt, Jia Hu, Mark Tschudi, Steven Aulenbach, Eugene Allwine, and Teresa Coons

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surface–atmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of investigators from U.S. universities and research institutes who carried out a multiscale and multidisciplinary field and modeling investigation of the CO2 exchange between ecosystems and the atmosphere and of CO2 transport over complex mountainous terrain in the Rocky Mountain region of Colorado. The goals of the field campaign, which included ground and airborne in situ and remote-sensing measurements, were to characterize unique features of the local CO2 exchange and to find effective methods to measure regional ecosystem–atmosphere CO2 exchange over complex terrain. The modeling effort included atmospheric and ecological numerical modeling and data assimilation to investigate regional CO2 transport and biological processes involved in ecosystem–atmosphere carbon exchange. In this report, we document our approaches, demonstrate some preliminary results, and discuss principal patterns and conclusions concerning ecosystem–atmosphere carbon exchange over complex terrain and its relation to past studies that have considered these processes over much simpler terrain.

Full access