Search Results

You are looking at 11 - 20 of 69 items for

  • Author or Editor: Michael Bell x
  • All content x
Clear All Modify Search
Michael S. Halpert and Gerald D. Bell

Abstract

No Abstract Available

Full access
Annette M. Foerster and Michael M. Bell

Abstract

Thermodynamic retrievals can derive pressure and temperature information from kinematic measurements in regions where no in situ observations are available. This study presents a new retrieval technique called SAMURAI-TR (Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation–Thermodynamic Retrieval) that derives three-dimensional fields of pressure and density potential temperature from multiple-Doppler radar data using a variational approach. SAMURAI-TR advances existing methods by 1) allowing for a horizontal variation in the reference-state definition and 2) representing the retrieved quantities of pressure and temperature as three-dimensional functions consisting of a series of finite-element cubic B-splines. The first advancement enables the retrieval to explicitly account for the large radial gradient of the mean thermodynamic state in tropical cyclones and other rapidly rotating vortices. The second advancement allows for specification of the three-dimensional pressure and temperature gradients as pseudo-observations from Doppler-derived winds, effectively linking the vertical levels without the use of the thermodynamic equation or a microphysical closure. The retrieval uses only the horizontal and vertical momentum equations, their derivatives, and low-pass filters. The accuracy and sensitivity of the retrieval are assessed using a WRF simulation of a tropical cyclone. SAMURAI-TR has good accuracy compared to prior techniques and retrieves pressure to within 0.25 hPa and temperature to within 0.7 K RMSE. The application of the method to real data is demonstrated using multiple-Doppler data from Hurricane Rita (2005).

Full access
Annette M. Boehm and Michael M. Bell

Abstract

The newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.

Restricted access
Dandan Tao, Richard Rotunno, and Michael Bell

Abstract

This study revisits the axisymmetric tropical cyclone (TC) theory from D. K. Lilly’s unpublished manuscript (Lilly model) and compares it to axisymmetric TC simulations from a nonhydrostatic cloud model. Analytic solutions of the Lilly model are presented through simplifying assumptions. Sensitivity experiments varying the sea surface, boundary layer and tropopause temperatures, and the absolute angular momentum (M) at some outer radius in the Lilly model show that these variations influence the radial structure of the tangential wind profile V(r) at the boundary layer top. However, these parameter variations have little effect on the inner-core normalized tangential wind, V(r/r m)/V m, where V m is the maximum tangential wind at radius r m. The outflow temperature T as a function of M (or saturation entropy s*) is found to be the only input that changes the normalized tangential wind radial structure in the Lilly model. In contrast with the original assumption of the Lilly model that T (s*) is determined by the environment, it is argued here that T (s*) is determined by the TC interior flow under the environmental constraint of the tropopause height. The present study shows that the inner-core tangential wind radial structure from the Lilly model generally agrees well with nonhydrostatic cloud model simulations except in the eyewall region where the Lilly model tends to underestimate the tangential winds due to its balanced-dynamics assumptions. The wind structure in temperature–radius coordinates from the Lilly model can largely reproduce the numerical simulation results. Though the Lilly model is based on a number of simplifying assumptions, this paper shows its utility in understanding steady-state TC intensity and structure.

Restricted access
Xiaowen Tang, Wen-Chau Lee, and Michael Bell

Abstract

The principal rainband in tropical cyclones is currently depicted as a solitary and continuous precipitation region. However, the airborne radar observations of the principal rainband in Typhoon Hagupit (2008) reveal multiple subrainband structures. These subbands possess many characteristics of the squall lines with trailing stratiform in the midlatitudes and are different from those documented in previous principal rainband studies. The updraft and reflectivity cores are upright and elevated. The updraft is fed by a low-level radial outflow from the inner side. The tangential wind speed shows a clear midlevel jet on the inner side of the reflectivity core. Except for the structural similarities, the dynamics of the subbands is also similar to the squall lines. The local environment near the subbands shows little convective inhibition, modest instability, and vertical wind shear. The temperature retrieval shows a cold pool structure in the stratiform precipitation region. The estimated vertical wind shear induced by the cold pool is close to that of the local environment. The structural and dynamic similarities to the squall lines imply that the variation of principal rainbands is subjected to convective-scale dynamics related to the local environment in addition to storm-scale dynamics. The subbands show positive impacts to the vortex intensity in terms of potential vorticity redistribution and absolute angular momentum advection. The positive impacts are closely related to specific structural characteristics of the subbands, which suggests the importance of understanding the convective-scale structure and dynamics of the principal rainband.

Full access
Chaehyeon C. Nam and Michael M. Bell

Abstract

The impact of vertical wind shear (VWS) on tropical cyclogenesis is examined from the synoptic to mesoscales using airborne Doppler radar observations of predepression Hagupit during the Tropical Cyclone Structure 2008 (TCS08)/THORPEX Pacific Area Regional Campaign (T-PARC) field campaigns. The high temporal and spatial resolution observations reveal complex localized convective and vortical characteristics of a predepression in a sheared environment. Predepression Hagupit interacted with an upper-tropospheric trough during the observation period. The strong deep-layer VWS (>20 m s−1) had a negative impact on the development through misalignment of the low- and midlevel circulations and dry air intrusion. However, the low-level circulation persisted, and the system ultimately formed into a tropical cyclone after it left the high-shear zone. Here we propose that a key process that enabled the predepression to survive through the upper-tropospheric trough interaction was persistent vorticity amplification on the meso-γ scale that was aggregated on the meso-α scale within the wave pouch. Multi-Doppler wind analysis indicates that cumulus congestus tilted the low-level horizontal vorticity into the vertical in the early stage of convective life cycle, followed by stretching from maturing deep convection. Variations in low-level VWS on the meso-β scale affect convective organization and horizontal vorticity generation. The results provide new insights into multiscale processes during TC genesis and the interactions of a predepression with VWS at various spatial scales.

Restricted access
Michael A. Bell and Peter J. Lamb

Abstract

Since the late 1960s, the West African Sudan–Sahel zone (10°–18°N) has experienced persistent and often severe drought, which is among the most undisputed and largest regional climate changes in the last half-century. Previous documentation of the drought generally has used monthly, seasonal, and annual rainfall totals and departures, in a standard “climate” approach that overlooks the underlying weather system variability. Most Sudan–Sahel rainfall occurs during June–September and is delivered by westward-propagating, linear-type, mesoscale convective systems [disturbance lines (DLs)] that typically have much longer north–south (102–103 km) than east–west (10–102 km) dimensions. Here, a large set of daily rainfall data is analyzed to relate DL and regional climate variability on intraseasonal-to-multidecadal time scales for 1951–98. Rain gauge–based indices of DL frequency, size, and intensity are evaluated on a daily basis for four 440-km square “catchments” that extend across most of the West African Sudan–Sahel (18°W–4°E) and are then distilled into 1951–98 time series of 10-day and seasonal frequency/magnitude summary statistics. This approach is validated using Tropical Applications of Meteorology Using Satellite Data (TAMSAT) satellite IR cold cloud duration statistics for the same 1995–98 DLs.

Results obtained for all four catchments are remarkably similar on each time scale. Long-term (1951–98) average DL size/organization increases monotonically from early June to late August and then decreases strongly during September. In contrast, average DL intensity maximizes 10–30 days earlier than DL size/organization and is distributed more symmetrically within the rainy season for all catchments except the westernmost, where DL intensity tracks DL size/organization very closely. Intraseasonal and interannual DL variability is documented using sets of very deficient (8) and much more abundant (7) rainy seasons during 1951–98. The predominant mode of rainfall extremes involves near-season-long suppression or enhancement of the seasonal cycles of DL size/organization and intensity, especially during the late July–late August rainy season peak. Other extreme seasons result solely from peak season anomalies. On the multidecadal scale, the dramatic decline in seasonal rainfall totals from the early 1950s to the mid-1980s is shown to result from pronounced downtrends in DL size/organization and intensity. Surprisingly, this DL shrinking–fragmentation–weakening is not accompanied by increases in catchment rainless days (i.e., total DL absence). Like the seasonal rainfall totals, DL size/organization and intensity increase slightly after the mid-1980s.

Full access
Michael S. Halpert and Gerald D. Bell

The climate of 1996 can be characterized by several phenomena that reflect substantial deviations from the mean state of the atmosphere persisting from months to seasons. First, mature cold-episode conditions persisted across the tropical Pacific from November 1995 through May 1996 and contributed to large-scale anomalies of atmospheric circulation, temperature, and precipitation across the Tropics, the North Pacific and North America. These anomalies were in many respects opposite to those that had prevailed during the past several years in association with a prolonged period of tropical Pacific warm-episode conditions (ENSO). Second, strong tropical intraseasonal (Madden–Julian oscillations) activity was observed during most of the year. The impact of these oscillations on extratropical circulation variability was most evident late in the year in association with strong variations in the eastward extent of the East Asian jet and in the attendant downstream circulation, temperature, and precipitation patterns over the eastern North Pacific and central North America. Third, a return to the strong negative phase of the atmospheric North Atlantic oscillation (NAO) during November 1995–February 1996, following a nearly continuous 15-yr period of positive-phase NAO conditions, played a critical role in affecting temperature and precipitation patterns across the North Atlantic, Eurasia, and northern Africa. The NAO also contributed to a significant decrease in wintertime temperatures across large portions of Siberia and northern Russia from those that had prevailed during much of the 1980s and early 1990s.

Other regional aspects of the short-term climate during 1996 included severe drought across the southwestern United States and southern plains states during October 1995–May 1996, flooding in the Pacific Northwest region of the United States during the 1995/96 and 1996/97 winters, a cold and extremely snowy 1995/96 winter in the eastern United States, a second consecutive year of above-normal North Atlantic hurricane activity, near-normal rains in the African Sahel, above-normal rainfall across southeastern Africa during October 1995–April 1996, above-normal precipitation for most of the year across eastern and southeastern Australia following severe drought in these areas during 1995, and generally nearnormal monsoonal rains in India with significantly below-normal rainfall in Bangladesh and western Burma.

The global annual mean surface temperature for land and marine areas during 1996 averaged 0.21°C above the 1961–90 base period means. This is a decrease of 0.19°C from the record warm year of 1995 but was still among the 10 highest values observed since 1860. The global land-only temperature for 1996 was 0.06°C above normal and was the lowest anomaly observed since 1985 (−0.11°C). Much of this relative decrease in global temperatures occurred in the Northern Hemisphere extratropics, where land-only temperatures dropped from 0.42°C above normal in 1995 to 0.04°C below normal in 1996.

The year also witnessed a continuation of near-record low ozone amounts in the Southern Hemisphere stratosphere, along with an abnormally prolonged appearance of the “ozone hole” into early December. The areal extent of the ozone hole in November and early December exceeded that previously observed for any such period on record. However, its areal extent at peak amplitude during late September–early October was near that observed during the past several years.

Full access
Benjamin C. Trabing and Michael M. Bell

Abstract

The characteristics of official National Hurricane Center (NHC) intensity forecast errors are examined for the North Atlantic and east Pacific basins from 1989 to 2018. It is shown how rapid intensification (RI) and rapid weakening (RW) influence yearly NHC forecast errors for forecasts between 12 and 48 h in length. In addition to being the tail of the intensity change distribution, RI and RW are at the tails of the forecast error distribution. Yearly mean absolute forecast errors are positively correlated with the yearly number of RI/RW occurrences and explain roughly 20% of the variance in the Atlantic and 30% in the east Pacific. The higher occurrence of RI events in the east Pacific contributes to larger intensity forecast errors overall but also a better probability of detection and success ratio. Statistically significant improvements to 24-h RI forecast biases have been made in the east Pacific and to 24-h RW biases in the Atlantic. Over-ocean 24-h RW events cause larger mean errors in the east Pacific that have not improved with time. Environmental predictors from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) are used to diagnose what conditions lead to the largest RI and RW forecast errors on average. The forecast error distributions widen for both RI and RW when tropical systems experience low vertical wind shear, warm sea surface temperature, and moderate low-level relative humidity. Consistent with existing literature, the forecast error distributions suggest that improvements to our observational capabilities, understanding, and prediction of inner-core processes is paramount to both RI and RW prediction.

Restricted access
Muhammad Naufal Razin and Michael M. Bell

Abstract

Hurricane Ophelia (2005) underwent an unconventional eyewall replacement cycle (ERC) as it was a Category 1 storm located over cold sea surface temperatures near 23°C. The ERC was analyzed using airborne radar, flight-level, and dropsonde data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) intensive observation period on 11 September 2005. Results showed that the spin-up of the secondary tangential wind maximum during the ERC can be attributed to the efficient convergence of absolute angular momentum by the mid-level inflow of Ophelia’s dominantly stratiform rainbands. This secondary tangential wind maximum strongly contributed to the azimuthal mean tangential wind field, which is conducive for increased low-level supergradient winds and corresponding outflow. The low-level supergradient forcing enhanced convergence to form a secondary eyewall. Ophelia provides a unique example of an ERC occurring in a weaker storm with predominantly stratiform rainbands, suggesting an important role of stratiform precipitation processes in the development of secondary eyewalls.

Restricted access