Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Michael L. Jensen x
  • All content x
Clear All Modify Search

CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data

A New Data Product for Climate Studies

Shaocheng Xie, Renata B. McCoy, Stephen A. Klein, Richard T. Cederwall, Warren J. Wiscombe, Michael P. Jensen, Karen L. Johnson, Eugene E. Clothiaux, Krista L. Gaustad, Charles N. Long, James H. Mather, Sally A. McFarlane, Yan Shi, Jean-Christophe Golaz, Yanluan Lin, Stefanie D. Hall, Raymond A. McCord, Giri Palanisamy, and David D. Turner

Abstract

No Abstract available.

Full access
Adam J. Clark, Steven J. Weiss, John S. Kain, Israel L. Jirak, Michael Coniglio, Christopher J. Melick, Christopher Siewert, Ryan A. Sobash, Patrick T. Marsh, Andrew R. Dean, Ming Xue, Fanyou Kong, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Jidong Gao, Xuguang Wang, Jun Du, David R. Novak, Faye E. Barthold, Michael J. Bodner, Jason J. Levit, C. Bruce Entwistle, Tara L. Jensen, and James Correia Jr.

The NOAA Hazardous Weather Testbed (HWT) conducts annual spring forecasting experiments organized by the Storm Prediction Center and National Severe Storms Laboratory to test and evaluate emerging scientific concepts and technologies for improved analysis and prediction of hazardous mesoscale weather. A primary goal is to accelerate the transfer of promising new scientific concepts and tools from research to operations through the use of intensive real-time experimental forecasting and evaluation activities conducted during the spring and early summer convective storm period. The 2010 NOAA/HWT Spring Forecasting Experiment (SE2010), conducted 17 May through 18 June, had a broad focus, with emphases on heavy rainfall and aviation weather, through collaboration with the Hydrometeorological Prediction Center (HPC) and the Aviation Weather Center (AWC), respectively. In addition, using the computing resources of the National Institute for Computational Sciences at the University of Tennessee, the Center for Analysis and Prediction of Storms at the University of Oklahoma provided unprecedented real-time conterminous United States (CONUS) forecasts from a multimodel Storm-Scale Ensemble Forecast (SSEF) system with 4-km grid spacing and 26 members and from a 1-km grid spacing configuration of the Weather Research and Forecasting model. Several other organizations provided additional experimental high-resolution model output. This article summarizes the activities, insights, and preliminary findings from SE2010, emphasizing the use of the SSEF system and the successful collaboration with the HPC and AWC.

A supplement to this article is available online (DOI:10.1175/BAMS-D-11-00040.2)

Full access
Russell S. Vose, Scott Applequist, Mark A. Bourassa, Sara C. Pryor, Rebecca J. Barthelmie, Brian Blanton, Peter D. Bromirski, Harold E. Brooks, Arthur T. DeGaetano, Randall M. Dole, David R. Easterling, Robert E. Jensen, Thomas R. Karl, Richard W. Katz, Katherine Klink, Michael C. Kruk, Kenneth E. Kunkel, Michael C. MacCracken, Thomas C. Peterson, Karsten Shein, Bridget R. Thomas, John E. Walsh, Xiaolan L. Wang, Michael F. Wehner, Donald J. Wuebbles, and Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access
Robert Wood, Michael P. Jensen, Jian Wang, Christopher S. Bretherton, Susannah M. Burrows, Anthony D. Del Genio, Ann M. Fridlind, Steven J. Ghan, Virendra P. Ghate, Pavlos Kollias, Steven K. Krueger, Robert L. McGraw, Mark A. Miller, David Painemal, Lynn M. Russell, Sandra E. Yuter, and Paquita Zuidema
Full access
Robert M. Rauber, Bjorn Stevens, Jennifer Davison, Sabine Goke, Olga L. Mayol-Bracero, David Rogers, Paquita Zuidema, Harry T. Ochs III, Charles Knight, Jorgen Jensen, Sarah Bereznicki, Simona Bordoni, Humberto Caro-Gautier, Marilé Colón-Robles, Maylissa Deliz, Shaunna Donaher, Virendra Ghate, Ela Grzeszczak, Colleen Henry, Anne Marie Hertel, Ieng Jo, Michael Kruk, Jason Lowenstein, Judith Malley, Brian Medeiros, Yarilis Méndez-Lopez, Subhashree Mishra, Flavia Morales-García, Louise A. Nuijens, Dennis O'Donnell, Diana L. Ortiz-Montalvo, Kristen Rasmussen, Erin Riepe, Sarah Scalia, Efthymios Serpetzoglou, Haiwei Shen, Michael Siedsma, Jennifer Small, Eric Snodgrass, Panu Trivej, and Jonathan Zawislak

The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO.

Full access