Search Results

You are looking at 11 - 20 of 55 items for

  • Author or Editor: Peter T. May x
  • All content x
Clear All Modify Search
Peter T. May and James M. Wilczak

Abstract

A wind profiler-radio acoustic sounding system at Denver collected hourly wind and virtual-temperature data through the boundary layer in the latter half of 1989. Analyzed monthly averages of 24-h time-height cross sections of the daily measurements show a number of significant features. The growth of the nocturnal temperature inversion is observed, followed by a rapid transition to a deep daytime mixed layer. The progression from a strong diurnal temperature signal in the summer to weak diurnal variability in the winter is documented. A mean upslope wind component is found in the middle-to-late afternoon in the summer and autumn months, with a reverse, return flow aloft. Boundary-layer winds show a strong inertial oscillation, with the phase closely following the diurnal heating cycle. Perturbation winds in the return-flow region aloft oscillate almost 180° out of phase with the boundary-layer winds.

Full access
Peter T. May and Deepak K. Rajopadhyaya

Abstract

Continuous vertical velocity measurements using a 50-MHz wind profiler located at Darwin in northern Australia during periods of active convection have been analyzed. This dataset is dominated by continental-type convection. Numerous examples of shallow, deep, and decaying convection were seen and it is shown that only the deep systems have substantial tilts to the draft structure. The most intense updrafts occur above the freezing level, but shallow convection also produces large-amplitude vertical motions. The strength of these updrafts in this dataset is very similar to other tropical, oceanic data. That observation is consistent with the idea that the magnitude of the updrafts is much less in the Tropics than for intense midlatitude convection because the convective available potential energy is distributed over a much deeper layer in the Tropics, although more intense updrafts may be present at other tropical locations, such as the Tiwi Islands north of Darwin. The size of the cores, however, is significantly greater here than with oceanic data and is similar to midlatitude results, thus supporting the suggestion that boundary layer depth is important in determining the horizontal scale. There is a net detrainment in the upward cores above the freezing level occurring at all space scales. The mass flux in intense updrafts is almost constant with height below the freezing level but is almost cancelled by downdrafts and the immediate surrounding environment. Two populations of downdrafts are seen, one a dynamical response associated with intense updrafts at all heights and a second driven by precipitation processes below the freezing level. The core size, intensity, and mass flux are all approximately lognormally distributed. It is shown that a wide range of velocity and size scales contribute to the upward mass flux.

Full access
Peter T. May and Greg J. Holland

Abstract

The implied heating and potential vorticity generation in tropical cyclone rainbands is derived from observed vertical motion profiles. High levels of potential vorticity generation are found in the stratiform rain regions, sufficient to generate substantial wind maxima along the bands within a couple of hours. Such generation may represent a significant source of potential vorticity for the system as a whole and may have implications for cyclone intensity.

Full access
Peter T. May and Richard G. Strauch

Abstract

A numerical model to simulate radar data is used for testing various estimators of the Doppler shift in Doppler radar echoes. The estimators are the pulse pair and poly-pulse pair algorithms in the correlation domain, a least-squares fitting to the spectral peak of the power spectra, and direct calculations of the moments from periodograms in the spectral domain. Two averaging schemes (a consensus average and a median filter) are also examined for data with poor signal-to-noise ratios. The data processing method used in Doppler radar wind profilers, which operate over a very wide range of signal to noise ratios, is examined in detail. It is shown that the direct moment calculation combined with a consensus averaging technique has the best overall performance for accuracy and the ability to use data with a very low signal-to-noise ratio.

Full access
Christopher R. Williams and Peter T. May

Abstract

Polarimetric weather radars offer the promise of accurate rainfall measurements by including polarimetric measurements in rainfall estimation algorithms. Questions still remain on how accurately polarimetric measurements represent the parameters of the raindrop size distribution (DSD). In particular, this study propagates polarimetric radar measurement uncertainties through a power-law median raindrop diameter D 0 algorithm to quantify the statistical uncertainties of the power-law regression. For this study, the power-law statistical uncertainty of D 0 ranged from 0.11 to 0.17 mm. Also, the polarimetric scanning radar D 0 estimates were compared with the median raindrop diameters retrieved from two vertically pointing profilers observing the same radar volume as the scanning radar. Based on over 900 observations, the standard deviation of the differences between the two radar estimates was approximately 0.16 mm. Thus, propagating polarimetric measurement uncertainties through D 0 power-law regressions is comparable to uncertainties between polarimeteric and profiler D 0 estimates.

Full access
Peter T. May and Thomas D. Keenan

Abstract

Polarimetric radar data have been used to produce microphysical classifications. This kind of analysis is run in a real-time mode from several research radars, including the C-band polarimetric (C-Pol) radar in Darwin, Australia. However, these classifications have had very little systematic evaluation with independent data. Using surface data is often difficult because of sampling issues, particularly for hail. The approach taken here is to use a combination of 50- and 920-MHz wind profiler estimates of rain and hail to provide validation data for the radar pixels over the profiler. The profilers also observe signals associated with lightning, and some comparisons are made between lightning occurrence and the radar measurements of graupel. The retrievals of hail–rain mixtures are remarkably robust; there are some issues regarding other microphysical classes, however, including difficulties in detecting melting snow layers in stratiform rain. These difficulties are largely due to the resampling of the radar volume data onto a grid and to poor separation of the snow classes.

Full access
Peter T. May, J. D. Kepert, and T. D. Keenan

Abstract

Tropical Cyclone Ingrid had a distinctly asymmetric reflectivity structure with an offshore maximum as it passed parallel to and over an extended coastline near a polarimetric weather radar located near Darwin, northern Australia. For the first time in a tropical cyclone, polarimetric weather radar microphysical analyses are used to identify extensive graupel and rain–hail mixtures in the eyewall. The overall microphysical structure was similar to that seen in some other asymmetric storms that have been sampled by research aircraft. Both environmental shear and the land–sea interface contributed significantly to the asymmetry, but their relative contributions were not determined. The storm also underwent very rapid changes in tangential wind speed as it moved over a narrow region of open ocean between a peninsula and the Tiwi Islands. The time scale for changes of 10 m s−1 was of the order of 1 h. There were also two distinct types of rainbands observed—large-scale principal bands with embedded deep convection and small-scale bands located within 50 km of the eyewall with shallow convective cells.

Full access
Paul A. Knapp, Peter T. Soulé, and Henri D. Grissino-Mayer

Abstract

The occurrence of moderate and severe sustained droughts in the interior Pacific Northwest (PNW) from 1733 to 1980 was mapped using 18 western juniper (Juniperus occidentalis var. occidentalis Hook.) tree-ring chronologies. The frequency and duration of both moderate and severe sustained droughts are substantially greater in the northwest region of the interior PNW. Thus, this area is identified as a drought core region. These droughts are chiefly attributed to the presence of a Pacific blocking high off the NW coast that is associated with significant reductions in cool season precipitation. Specifically, the impacted northwest region lies within a transition zone between the fluxes of marine airflow during the cool season months and interior air during the warm season months. The waxing and waning of the boundaries of this transition zone particularly affect western juniper trees growing in this region. During years in which a blocking high is present, marine airflow is substantially reduced, exposing the trees in the transition zone to substantially drier springtime conditions that limit soil moisture and reduce radial growth. Although the most severe and persistent droughts were concentrated in the northwest region, four large-scale droughts also impacted the entire interior PNW during the study period. These droughts occurred principally during PDO warm phases, suggesting a regional-scale linkage to this climatic oscillation.

Full access
Sergey Y. Matrosov, Peter T. May, and Matthew D. Shupe

Abstract

An attenuation-based method to retrieve vertical profiles of rainfall rate from vertically pointing Ka-band radar measurements has been refined and adjusted for use with the U.S. Department of Energy’s cloud radars deployed at multiple Atmospheric Radiation Program (ARM) test bed sites. This method takes advantage of the linear relationship between the rainfall rate and the attenuation coefficient, and can account for a priori information about the vertical profile of nonattenuated reflectivity. The retrieval method is applied to a wide variety of rainfall events observed at different ARM sites ranging from stratiform events with low-to-moderate rainfall rates (∼5 mm h−1) to heavy convective rains with rainfall rates approaching 100 mm h−1. The Ka-band attenuation-based retrieval results expressed in both instantaneous rainfall rates and in rainfall accumulations are compared to available surface data and measurements of a scanning C-band precipitation polarimetric radar located near the Darwin, Australia, ARM test bed site. The Ka-band retrievals are found to be in good agreement with the C-band radar estimates, which are based both on conventional radar reflectivity approaches and on polarimetric differential phase shift measurements. Typically, the C-band–Ka-band radar estimate differences are within the expected retrieval uncertainties. The magnitude of the Ka-band rainfall-rate estimate error depends on the retrieval resolution, rain intensity, and uncertainties in the profiles of nonattenuated reflectivity. It is shown that reasonable retrieval accuracies (∼15%–40%) can be achieved for a large dynamic range of observed rainfall rates (4–100 mm h−1) and the effective vertical resolution of about 1 km. The potential enhancements of the Ka-band attenuation-based method by including a priori information on vertical profiles of nonattenuated reflectivity and increasing the height range of the retrievals by using Ka-band polarization measurements are also discussed. The addition of the precipitation products to the suite of ARM hydrometeor retrievals can enhance the overall characterization of the vertical atmospheric column.

Full access
Acacia S. Pepler, Peter T. May, and Merhala Thurai

Abstract

The algorithms used to estimate rainfall from polarimetric radar variables show significant variance in error characteristics over the range of naturally occurring rain rates. As a consequence, to improve rainfall estimation accuracy using polarimetric radar, it is necessary to optimally combine a number of different algorithms. In this study, a new composite method is proposed that weights the algorithms by the inverse of their theoretical error. A number of approaches are discussed and are investigated using simulated radar data calculated from disdrometer measurements. The resultant algorithms show modest improvement over composite methods based on decision-tree logic—in particular, at rain rates above 20 mm h−1.

Full access