Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Rabindra Palikonda x
  • All content x
Clear All Modify Search
Johannes Mohrmann, Christopher S. Bretherton, Isabel L. McCoy, Jeremy McGibbon, Robert Wood, Virendra Ghate, Bruce Albrecht, Mampi Sarkar, Paquita Zuidema, and Rabindra Palikonda

Abstract

Flight data from the Cloud System Evolution over the Trades (CSET) campaign over the Pacific stratocumulus-to-cumulus transition are organized into 18 Lagrangian cases suitable for study and future modeling, made possible by the use of a track-and-resample flight strategy. Analysis of these cases shows that 2-day Lagrangian coherence of long-lived species (CO and O3) is high (r = 0.93 and 0.73, respectively), but that of subcloud aerosol, MBL depth, and cloud properties is limited. Although they span a wide range in meteorological conditions, most sampled air masses show a clear transition when considering 2-day changes in cloudiness (−31% averaged over all cases), MBL depth (+560 m), estimated inversion strength (EIS; −2.2 K), and decoupling, agreeing with previous satellite studies and theory. Changes in precipitation and droplet number were less consistent. The aircraft-based analysis is augmented by geostationary satellite retrievals and reanalysis data along Lagrangian trajectories between aircraft sampling times, documenting the evolution of cloud fraction, cloud droplet number concentration, EIS, and MBL depth. An expanded trajectory set spanning the summer of 2015 is used to show that the CSET-sampled air masses were representative of the season, with respect to EIS and cloud fraction. Two Lagrangian case studies attractive for future modeling are presented with aircraft and satellite data. The first features a clear Sc–Cu transition involving MBL deepening and decoupling with decreasing cloud fraction, and the second undergoes a much slower cloud evolution despite a greater initial depth and decoupling state. Potential causes for the differences in evolution are explored, including free-tropospheric humidity, subsidence, surface fluxes, and microphysics.

Free access
Patrick S. Skinner, Dustan M. Wheatley, Kent H. Knopfmeier, Anthony E. Reinhart, Jessica J. Choate, Thomas A. Jones, Gerald J. Creager, David C. Dowell, Curtis R. Alexander, Therese T. Ladwig, Louis J. Wicker, Pamela L. Heinselman, Patrick Minnis, and Rabindra Palikonda

Abstract

An object-based verification methodology for the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) has been developed and applied to 32 cases between December 2015 and June 2017. NEWS-e forecast objects of composite reflectivity and 30-min updraft helicity swaths are matched to corresponding reflectivity and rotation track objects in Multi-Radar Multi-Sensor system data on space and time scales typical of a National Weather Service warning. Object matching allows contingency-table-based verification statistics to be used to establish baseline performance metrics for NEWS-e thunderstorm and mesocyclone forecasts. NEWS-e critical success index (CSI) scores of reflectivity (updraft helicity) forecasts decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 h of forecast time. CSI scores decrease through the forecast period, indicating that errors do not saturate during the 3-h forecast. Lower verification scores for rotation track forecasts are primarily a result of a high-frequency bias. Comparison of different system configurations used in 2016 and 2017 shows an increase in skill for 2017 reflectivity forecasts, attributable mainly to improvements in the forecast initial conditions. A small decrease in skill in 2017 rotation track forecasts is likely a result of sample differences between 2016 and 2017. Although large case-to-case variation is present, evidence is found that NEWS-e forecast skill improves with increasing object size and intensity.

Full access
Robert Wood, Matthew Wyant, Christopher S. Bretherton, Jasmine Rémillard, Pavlos Kollias, Jennifer Fletcher, Jayson Stemmler, Simone de Szoeke, Sandra Yuter, Matthew Miller, David Mechem, George Tselioudis, J. Christine Chiu, Julian A. L. Mann, Ewan J. O’Connor, Robin J. Hogan, Xiquan Dong, Mark Miller, Virendra Ghate, Anne Jefferson, Qilong Min, Patrick Minnis, Rabindra Palikonda, Bruce Albrecht, Ed Luke, Cecile Hannay, and Yanluan Lin

Abstract

The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer.

Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.

The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

Full access
William L. Smith Jr., Christy Hansen, Anthony Bucholtz, Bruce E. Anderson, Matthew Beckley, Joseph G. Corbett, Richard I. Cullather, Keith M. Hines, Michelle Hofton, Seiji Kato, Dan Lubin, Richard H. Moore, Michal Segal Rosenhaimer, Jens Redemann, Sebastian Schmidt, Ryan Scott, Shi Song, John D. Barrick, J. Bryan Blair, David H. Bromwich, Colleen Brooks, Gao Chen, Helen Cornejo, Chelsea A. Corr, Seung-Hee Ham, A. Scott Kittelman, Scott Knappmiller, Samuel LeBlanc, Norman G. Loeb, Colin Miller, Louis Nguyen, Rabindra Palikonda, David Rabine, Elizabeth A. Reid, Jacqueline A. Richter-Menge, Peter Pilewskie, Yohei Shinozuka, Douglas Spangenberg, Paul Stackhouse, Patrick Taylor, K. Lee Thornhill, David van Gilst, and Edward Winstead

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

Full access