Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: Shiqiu Peng x
  • All content x
Clear All Modify Search
Xiaowei Wang, Shiqiu Peng, Zhiyu Liu, Rui Xin Huang, Yu-Kun Qian, and Yineng Li

Abstract

By taking into account the contributions of both locally and remotely generated internal tides, the tidal mixing in the Luzon Strait (LS) and the South China Sea (SCS) is investigated through internal-tide simulation and energetics analysis. A three-dimensional nonhydrostatic high-resolution model driven by four primary tidal constituents (M2, S2, K1, and O1) is used for the internal-tide simulation. The baroclinic energy budget analysis reveals that the internal tides radiated from the LS are the dominant energy source for the tidal dissipation in the SCS. In the LS, the estimated depth-integrated turbulent kinetic energy dissipation exceeds O(1) W m−2 atop the two subsurface ridges, with a dissipation rate of >O(10−7) W kg−1 and diapycnal diffusivity of ~O(10−2) m2 s−1. In the SCS, the most intense turbulence occurs in the deep-water basin with a dissipation rate of O(10−8–10−6) W kg−1 and diapycnal diffusivity of O(10−3–10−1) m2 s−1 within the ~2000-m water column above the seafloor as well as in the shelfbreak region with a dissipation rate of O(10−7–10−6) W kg−1 and diapycnal diffusivity of O(10−4–10−3) m2 s−1. These estimated values are consistent with observations reported in previous studies and are at least one order of magnitude larger than those based solely on locally generated internal tides.

Full access
Shiqiu Peng, Yineng Li, Xiangqian Gu, Shumin Chen, Dongxiao Wang, Hui Wang, Shuwen Zhang, Weihua Lv, Chunzai Wang, Bei Liu, Duanling Liu, Zhijuan Lai, Wenfeng Lai, Shengan Wang, Yerong Feng, and Junfeng Zhang

Abstract

A real-time regional forecasting system for the South China Sea (SCS), called the Experimental Platform of Marine Environment Forecasting (EPMEF), is introduced in this paper. EPMEF consists of a regional atmosphere model, a regional ocean model, and a wave model, and performs a real-time run four times a day. Output from the Global Forecast System (GFS) from the National Centers for Environmental Prediction (NCEP) is used as the initial and boundary conditions of two nested domains of the atmosphere model, which can exert a constraint on the development of small- and mesoscale atmospheric perturbations through dynamical downscaling. The forecasted winds at 10-m height from the atmosphere model are used to drive the ocean and wave models. As an initial evaluation, a census on the track predictions of 44 tropical cyclones (TCs) during 2011–13 indicates that the performance of EPMEF is very encouraging and comparable to those of other official agencies worldwide. In particular, EPMEF successfully predicted several abnormal typhoon tracks including the sharp recurving of Megi (2010) and the looping of Roke (2011). Further analysis reveals that the dynamically downscaled GFS forecasts from the most updated forecast cycle and the optimal combination of different microphysics and PBL schemes primarily contribute to the good performance of EPMEF in TC track forecasting. EPMEF, established primarily for research purposes with the potential to be implemented into operations, provides valuable information not only to the operational forecasters of local marine/meteorological agencies or international TC forecast centers, but also to other stakeholders such as the fishing industry and insurance companies.

Full access
Lei Yang, Dongxiao Wang, Jian Huang, Xin Wang, Lili Zeng, Rui Shi, Yunkai He, Qiang Xie, Shengan Wang, Rongyu Chen, Jinnan Yuan, Qiang Wang, Ju Chen, Tingting Zu, Jian Li, Dandan Sui, and Shiqiu Peng

Abstract

Air–sea interaction in the South China Sea (SCS) has direct impacts on the weather and climate of its surrounding areas at various spatiotemporal scales. In situ observation plays a vital role in exploring the dynamic characteristics of the regional circulation and air–sea interaction. Remote sensing and regional modeling are expected to provide high-resolution data for studies of air–sea coupling; however, careful validation and calibration using in situ observations is necessary to ensure the quality of these data. Through a decade of effort, a marine observation network in the SCS has begun to be established, yielding a regional observatory for the air–sea synoptic system.

Earlier observations in the SCS were scarce and narrowly focused. Since 2004, an annual series of scientific open cruises during late summer in the SCS has been organized by the South China Sea Institute of Oceanology (SCSIO), carefully designed based on the dynamic characteristics of the oceanic circulation and air–sea interaction in the SCS region. Since 2006, the cruise carried a radiometer and radiosondes on board, marking a new era of marine meteorological observation in the SCS. Fixed stations have been established for long-term and sustained records. Observations obtained through the network have been used to study regional ocean circulation and processes in the marine atmospheric boundary layer. In the future, a great number of multi-institutional, collaborative scientific cruises and observations at fixed stations will be carried out to establish a mesoscale hydrological and marine meteorological observation network in the SCS.

Full access