Search Results

You are looking at 11 - 20 of 51 items for

  • Author or Editor: Thomas L. Delworth x
  • All content x
Clear All Modify Search
Sarah B. Kapnick and Thomas L. Delworth

Abstract

This study assesses the ability of a newly developed high-resolution coupled model from the Geophysical Fluid Dynamics Laboratory to simulate the cold-season hydroclimate in the present climate and examines its response to climate change forcing. Output is assessed from a 280-yr control simulation that is based on 1990 atmospheric composition and an idealized 140-yr future simulation in which atmospheric carbon dioxide increases at 1% yr−1 until doubling in year 70 and then remains constant. When compared with a low-resolution model, the high-resolution model is found to better represent the geographic distribution of snow variables in the present climate. In response to idealized radiative forcing changes, both models produce similar global-scale responses in which global-mean temperature and total precipitation increase while snowfall decreases. Zonally, snowfall tends to decrease in the low to midlatitudes and increase in the mid- to high latitudes. At the regional scale, the high- and low-resolution models sometimes diverge in the sign of projected snowfall changes; the high-resolution model exhibits future increases in a few select high-altitude regions, notably the northwestern Himalaya region and small regions in the Andes and southwestern Yukon, Canada. Despite such local signals, there is an almost universal reduction in snowfall as a percent of total precipitation in both models. By using a simple multivariate model, temperature is shown to drive these trends by decreasing snowfall almost everywhere while precipitation increases snowfall in the high altitudes and mid- to high latitudes. Mountainous regions of snowfall increases in the high-resolution model exhibit a unique dominance of the positive contribution from precipitation over temperature.

Full access
Thomas L. Delworth and Keith W. Dixon

Abstract

Most projections of greenhouse gas–induced climate change indicate a weakening of the thermohaline circulation (THC) in the North Atlantic in response to increased freshening and warming in the subpolar region. These changes reduce high-latitude upper-ocean density and therefore weaken the THC. Using ensembles of numerical experiments with a coupled ocean–atmosphere model, it is found that this weakening could be delayed by several decades in response to a sustained upward trend in the Arctic/North Atlantic oscillation during winter, such as has been observed over the last 30 years. The stronger winds over the North Atlantic associated with this trend extract more heat from the ocean, thereby cooling and increasing the density of the upper ocean and thus opposing the previously described weakening of the THC. This result is of particular importance if the positive trend in the Arctic/North Atlantic oscillation is a response to increasing greenhouse gases, as has been recently suggested.

Full access
Liping Zhang, Thomas L. Delworth, and Liwei Jia

Abstract

The average predictability time (APT) method is used to identify the most predictable components of decadal sea surface temperature (SST) variations over the Southern Ocean (SO) in a 4000-yr unforced control run of the GFDL CM2.1 model. The most predictable component shows significant predictive skill for periods as long as 20 years. The physical pattern of this variability has a uniform sign of SST anomalies over the SO, with maximum values over the Amundsen–Bellingshausen–Weddell Seas. Spectral analysis of the associated APT time series shows a broad peak on time scales of 70–120 years. This most predictable pattern is closely related to the mature phase of a mode of internal variability in the SO that is associated with fluctuations of deep ocean convection. The second most predictable component of SO SST is characterized by a dipole structure, with SST anomalies of one sign over the Weddell Sea and SST anomalies of the opposite sign over the Amundsen–Bellingshausen Seas. This component has significant predictive skill for periods as long as 6 years. This dipole mode is associated with a transition between phases of the dominant pattern of SO internal variability. The long time scales associated with variations in SO deep convection provide the source of the predictive skill of SO SST on decadal scales. These analyses suggest that if the SO deep convection in a numerical forecast model could be adequately initialized, the future evolution of SO SST and its associated climate impacts are potentially predictable.

Full access
Thomas L. Delworth and Richard J. Greatbatch

Abstract

Previous analyses of an extended integration of the Geophysical Fluid Dynamics Laboratory coupled climate model have revealed pronounced multidecadal variations of the thermohaline circulation (THC) in the North Atlantic. The purpose of the current work is to assess whether those fluctuations can be viewed as a coupled air–sea mode (in the sense of ENSO), or as an oceanic response to forcing from the atmosphere model, in which large-scale feedbacks from the ocean to the atmospheric circulation are not critical.

A series of integrations using the ocean component of the coupled model are performed to address the above question. The ocean model is forced by suitably chosen time series of surface fluxes from either the coupled model or a companion integration of an atmosphere-only model run with a prescribed seasonal cycle of SSTs and sea-ice thickness. These experiments reveal that 1) the previously identified multidecadal THC variations can be largely viewed as an oceanic response to surface flux forcing from the atmosphere model, although air–sea coupling through the thermodynamics appears to modify the amplitude of the variability, and 2) variations in heat flux are the dominant term (relative to the freshwater and momentum fluxes) in driving the THC variability. Experiments driving the ocean model using either high- or low-pass-filtered heat fluxes, with a cutoff period of 20 yr, show that the multidecadal THC variability is driven by the low-frequency portion of the spectrum of atmospheric flux forcing. Analyses have also revealed that the multidecadal THC fluctuations are driven by a spatial pattern of surface heat flux variations that bears a strong resemblance to the North Atlantic oscillation. No conclusive evidence is found that the THC variability is part of a dynamically coupled mode of the atmosphere and ocean models.

Full access
Anthony J. Broccoli, Thomas L. Delworth, and Ngar-Cheung Lau

Abstract

The effect of changes in observational coverage on the association between the Arctic oscillation (AO) and extratropical Northern Hemisphere surface temperature is examined. A coupled atmosphere–ocean model, which produces a realistic simulation of the circulation and temperature patterns associated with the AO, is used as a surrogate for the real climate system. The association between the AO and spatial mean temperature, as quantified by regressing the latter on the AO index, is subject to a positive bias due to the incomplete spatial coverage of the observational network. The bias is largest during the early part of the twentieth century and decreases, but does not vanish, thereafter.

Full access
Salvatore Pascale, Sarah B. Kapnick, Simona Bordoni, and Thomas L. Delworth

Abstract

Widespread multiday convective bursts in the southwestern United States during the North American monsoon are often triggered by Gulf of California moisture surges (GoC surges). However, how GoC surges, and the amount and intensity of associated precipitation, will change in response to CO2-induced warming remains little known, not least because the most widely available climate models do not currently resolve the relevant mesoscale dynamics because of their coarse resolution (100 km or more). In this study, a 50-km-resolution global coupled model is used to address this question. It is found that the mean number of GoC surge events remains unchanged under CO2 doubling, but intermediate-to-high intensity surge-related precipitation tends to become less frequent, thus reducing the mean summertime rainfall. Low-level moisture fluxes associated with GoC surges as well as their convergence over land to the east of the GoC intensify, but the increases in low-level moisture are not matched by the larger increments in the near-surface saturation specific humidity because of amplified land warming. This results in a more unsaturated low-level atmospheric environment that disfavors moist convection. These thermodynamic changes are accompanied by dynamic changes that are also detrimental to convective activity, with the midlevel monsoonal ridge projected to expand and move to the west of its present-day climatological maximum. Despite the overall reduction in precipitation, the frequency of very intense, localized daily surge-related precipitation in Arizona and surrounding areas is projected to increase with increased precipitable water.

Full access
Paul J. Kushner, Isaac M. Held, and Thomas L. Delworth

Abstract

The response of the Southern Hemisphere (SH), extratropical, atmospheric general circulation to transient, anthropogenic, greenhouse warming is investigated in a coupled climate model. The extratropical circulation response consists of a SH summer half-year poleward shift of the westerly jet and a year-round positive wind anomaly in the stratosphere and the tropical upper troposphere. Along with the poleward shift of the jet, there is a poleward shift of several related fields, including the belt of eddy momentum-flux convergence and the mean meridional overturning in the atmosphere and in the ocean. The tropospheric wind response projects strongly onto the model’s “Southern Annular Mode” (also known as the “Antarctic oscillation”), which is the leading pattern of variability of the extratropical zonal winds.

Full access
Thomas L. Delworth, Fanrong Zeng, Anthony Rosati, Gabriel A. Vecchi, and Andrew T. Wittenberg

Abstract

Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.

Full access
Andrew T. Wittenberg, Anthony Rosati, Thomas L. Delworth, Gabriel A. Vecchi, and Fanrong Zeng

Abstract

Observations and climate simulations exhibit epochs of extreme El Niño–Southern Oscillation (ENSO) behavior that can persist for decades. Previous studies have revealed a wide range of ENSO responses to forcings from greenhouse gases, aerosols, and orbital variations, but they have also shown that interdecadal modulation of ENSO can arise even without such forcings. The present study examines the predictability of this intrinsically generated component of ENSO modulation, using a 4000-yr unforced control run from a global coupled GCM [GFDL Climate Model, version 2.1 (CM2.1)] with a fairly realistic representation of ENSO. Extreme ENSO epochs from the unforced simulation are reforecast using the same (“perfect”) model but slightly perturbed initial conditions. These 40-member reforecast ensembles display potential predictability of the ENSO trajectory, extending up to several years ahead. However, no decadal-scale predictability of ENSO behavior is found. This indicates that multidecadal epochs of extreme ENSO behavior can arise not only intrinsically but also delicately and entirely at random. Previous work had shown that CM2.1 generates strong, reasonably realistic, decadally predictable high-latitude climate signals, as well as tropical and extratropical decadal signals that interact with ENSO. However, those slow variations appear not to lend significant decadal predictability to this model’s ENSO behavior, at least in the absence of external forcings. While the potential implications of these results are sobering for decadal predictability, they also offer an expedited approach to model evaluation and development, in which large ensembles of short runs are executed in parallel, to quickly and robustly evaluate simulations of ENSO. Further implications are discussed for decadal prediction, attribution of past and future ENSO variations, and societal vulnerability.

Full access
Xinrong Wu, Shaoqing Zhang, Zhengyu Liu, Anthony Rosati, Thomas L. Delworth, and Yun Liu

Abstract

Because of the geographic dependence of model sensitivities and observing systems, allowing optimized parameter values to vary geographically may significantly enhance the signal in parameter estimation. Using an intermediate atmosphere–ocean–land coupled model, the impact of geographic dependence of model sensitivities on parameter optimization is explored within a twin-experiment framework. The coupled model consists of a 1-layer global barotropic atmosphere model, a 1.5-layer baroclinic ocean including a slab mixed layer with simulated upwelling by a streamfunction equation, and a simple land model. The assimilation model is biased by erroneously setting the values of all model parameters. The four most sensitive parameters identified by sensitivity studies are used to perform traditional single-value parameter estimation and new geographic-dependent parameter optimization. Results show that the new parameter optimization significantly improves the quality of state estimates compared to the traditional scheme, with reductions of root-mean-square errors as 41%, 23%, 62%, and 59% for the atmospheric streamfunction, the oceanic streamfunction, sea surface temperature, and land surface temperature, respectively. Consistently, the new parameter optimization greatly improves the model predictability as a result of the improvement of initial conditions and the enhancement of observational signals in optimized parameters. These results suggest that the proposed geographic-dependent parameter optimization scheme may provide a new perspective when a coupled general circulation model is used for climate estimation and prediction.

Full access