Search Results

You are looking at 11 - 17 of 17 items for

  • Author or Editor: Willem P. Sijp x
  • All content x
Clear All Modify Search
Willem P. Sijp, Michael Bates, and Matthew H. England

Abstract

Convective overturning arising from static instability during winter is thought to play a crucial role in the formation of North Atlantic Deep Water (NADW). In ocean general circulation models (OGCMs), a strong reduction in convective penetration depth arises when horizontal diffusion (HD) is replaced by Gent and McWilliams (GM) mixing to model the effect of mesoscale eddies on tracer advection. In areas of sinking, the role of vertical tracer transport due to convection is largely replaced by the vertical component of isopycnal diffusion along sloping isopycnals. Here, the effect of this change in tracer transport physics on the stability of NADW formation under freshwater (FW) perturbations of the North Atlantic (NA) in a coupled model is examined. It is found that there is a significantly increased stability of NADW to FW input when GM is used in spite of GM experiments exhibiting consistently weaker NADW formation rates in unperturbed steady states. It is also found that there is a significant increase in NADW stability upon the introduction of isopycnal diffusion in the absence of GM. This indicates that isopycnal diffusion of tracer rather than isopycnal thickness diffusion is responsible for the increased NADW stability observed in the GM run. This result is robust with respect to the choice of isopycnal diffusion coefficient. Also, the NADW behavior in the isopycnal run, which includes a fixed background horizontal diffusivity, demonstrates that HD is not responsible in itself for reducing NADW stability when simple horizontal diffusion is used. Our results suggest that care should be taken when interpreting the results of coarse grid models with regard to NADW sensitivity to FW anomalies, regardless of the choice of mixing scheme.

Full access
Jessica Trevena, Willem P. Sijp, and Matthew H. England

Abstract

The stability of Antarctic Bottom Water (AABW) to freshwater (FW) perturbations is investigated in a coupled climate model of intermediate complexity. It is found that AABW is stable to surface freshwater fluxes greater in volume and rate to those that permanently “shut down” North Atlantic Deep Water (NADW). Although AABW weakens during FW forcing, it fully recovers within 50 yr of termination of FW input. This is due in part to a concurrent deep warming during AABW suppression that acts to eventually destabilize the water column. In addition, the prevailing upwelling of Circumpolar Deep Water and northward Ekman transport across the Antarctic Circumpolar Current, regulated by the subpolar westerly winds, limits the accumulation of FW at high latitudes and provides a mechanism for resalinizing the surface after the FW forcing has ceased. Enhanced sea ice production in the cooler AABW suppressed state also aids in the resalinization of the surface after FW forcing is stopped. Convection then restarts with AABW properties only slightly colder and fresher compared to the unperturbed control climate state. Further experiments with larger FW perturbations and very slow application rates (0.2 Sv/1000 yr) (1 Sv ≡ 106 m3 s−1) confirm the lack of multiple steady states of AABW in the model. This contrasts with the North Atlantic, wherein classical hysteresis behavior is obtained with similar forcing. The climate response to reduced AABW production is also investigated. During peak FW forcing, Antarctic surface sea and air temperatures decrease by a maximum of 2.5° and 2.2°C, respectively. This is of a similar magnitude to the corresponding response in the North Atlantic. Although in the final steady state, the AABW experiment returns to the original control climate, whereas the North Atlantic case transitions to a different steady state characterized by substantial regional cooling (up to 6.0°C surface air temperature).

Full access
Olivier Arzel, Matthew H. England, and Willem P. Sijp

Abstract

A previous study by Mikolajewicz suggested that the wind stress feedback stabilizes the Atlantic thermohaline circulation. This result was obtained under modern climate conditions, for which the presence of the massive continental ice sheets characteristic of glacial times is missing. Here a coupled ocean–atmosphere–sea ice model of intermediate complexity, set up in an idealized spherical sector geometry of the Atlantic basin, is used to show that, under glacial climate conditions, wind stress feedback actually reduces the stability of the meridional overturning circulation (MOC). The analysis reveals that the influence of the wind stress feedback on the glacial MOC response to an external source of freshwater applied at high northern latitudes is controlled by the following two distinct processes: 1) the interactions between the wind field and the sea ice export in the Northern Hemisphere (NH), and 2) the northward Ekman transport in the tropics and upward Ekman pumping in the core of the NH subpolar gyre. The former dominates the response of the coupled system; it delays the recovery of the MOC, and in some cases even stabilizes collapsed MOC states achieved during the hosing period. The latter plays a minor role and mitigates the impact of the former process by reducing the upper-ocean freshening in deep-water formation regions. Hence, the wind stress feedback delays the recovery of the glacial MOC, which is the opposite of what occurs under modern climate conditions. Close to the critical transition threshold beyond which the circulation collapses, the glacial MOC appears to be very sensitive to changes in surface wind stress forcing and exhibits, in the aftermath of the freshwater pulse, a nonlinear dependence upon the wind stress feedback magnitude: a complete and irreversible MOC shutdown occurs only for intermediate wind stress feedback magnitudes. This behavior results from the competitive effects of processes 1 and 2 on the midlatitude upper-ocean salinity during the shutdown phase of the MOC. The mechanisms presented here may be relevant to the large meltwater pulses that punctuated the last glacial period.

Full access
Willem P. Sijp, Jonathan M. Gregory, Remi Tailleux, and Paul Spence

Abstract

A key idea in the study of the Atlantic meridional overturning circulation (AMOC) is that its strength is proportional to the meridional density gradient or, more precisely, to the strength of the meridional pressure gradient. A physical basis that would indicate how to estimate the relevant meridional pressure gradient locally from the density distribution in numerical ocean models to test such an idea has been lacking however. Recently, studies of ocean energetics have suggested that the AMOC is driven by the release of available potential energy (APE) into kinetic energy (KE) and that such a conversion takes place primarily in the deep western boundary currents. In this paper, the authors develop an analytical description linking the western boundary current circulation below the interface separating the North Atlantic Deep Water (NADW) and Antarctic Intermediate Water (AAIW) to the shape of this interface. The simple analytical model also shows how available potential energy is converted into kinetic energy at each location and that the strength of the transport within the western boundary current is proportional to the local meridional pressure gradient at low latitudes. The present results suggest, therefore, that the conversion rate of potential energy may provide the necessary physical basis for linking the strength of the AMOC to the meridional pressure gradient and that this could be achieved by a detailed study of the APE to KE conversion in the western boundary current.

Full access
Willem P. Sijp, Matthew H. England, and J. R. Toggweiler

Abstract

The role of tectonic Southern Ocean gateway changes in driving Antarctic climate change at the Eocene–Oligocene boundary remains a topic of debate. One approach taken in previous idealized modeling studies of gateway effects has been to alter modern boundary conditions, whereby the Drake Passage becomes closed. Here, the authors follow this approach but vary atmospheric pCO2 over a range of values when comparing gateway configurations. They find a significantly greater sensitivity of Antarctic temperatures to Southern Ocean gateway changes when atmospheric pCO2 is high than when concentrations are low and the ambient climate is cool. In particular, the closure of the Drake Passage (DP) gap is a necessary condition for the existence of ice-free Antarctic conditions at high CO2 concentrations in this coupled climate model. The absence of the Antarctic Circumpolar Current (ACC) is particularly conducive to warm Antarctic conditions at higher CO2 concentrations, which is markedly different from previous simulations conducted under present-day CO2 conditions. The reason for this is the reduction of sea ice associated with higher CO2. Antarctic sea surface temperature and surface air temperature warming due to a closed DP gap reach values around ∼5° and ∼7°C, respectively, for high concentrations of CO2 (above 1250 ppm). In other words, the authors find a significantly greater sensitivity of Antarctic temperatures to atmospheric CO2 concentration when the DP is closed compared to when it is open. The presence of a DP gap inhibits a return to warmer and more Eocene-like Antarctic and deep ocean conditions, even under enhanced atmospheric greenhouse gas concentrations.

Full access
Jan D. Zika, Matthew H. England, and Willem P. Sijp

Abstract

The thermohaline streamfunction is presented. The thermohaline streamfunction is the integral of transport in temperature–salinity space and represents the net pathway of oceanic water parcels in that space. The thermohaline streamfunction is proposed as a diagnostic to understand the global oceanic circulation and its role in the global movement of heat and freshwater. The coordinate system used filters out adiabatic fluctuations. Physical pathways and ventilation time scales are naturally diagnosed, as are the roles of the mean flow and turbulent fluctuations. Because potential density is a function of temperature and salinity, the framework is naturally isopycnal and is ideal for the diagnosis of water-mass transformations and advective diapycnal heat and freshwater transports. Crucially, the thermohaline streamfunction is computationally and practically trivial to implement as a diagnostic for ocean models. Here, the thermohaline streamfunction is computed using the output of an equilibrated intermediate complexity climate model. It describes a global cell, a warm tropical cell, and a bottom water cell. The streamfunction computed from eddy-induced advection is equivalent in magnitude to that from the total advection, demonstrating the leading-order importance of parameterized eddy fluxes in oceanic heat and freshwater transports. The global cell, being clockwise in thermohaline space, tends to advect both heat and salt toward denser (poleward) water masses in symmetry with the atmosphere’s poleward transport of moisture. A reprojection of the global cell from thermohaline to geographical coordinates reveals a thermohaline circulation reminiscent of the schematized “global conveyor.”

Full access
Matthew H. England, David K. Hutchinson, Agus Santoso, and Willem P. Sijp

Abstract

The response of the global climate system to Drake Passage (DP) closure is examined using a fully coupled ocean–atmosphere–ice model. Unlike most previous studies, a full three-dimensional atmospheric general circulation model is included with a complete hydrological cycle and a freely evolving wind field, as well as a coupled dynamic–thermodynamic sea ice module. Upon DP closure the initial response is found to be consistent with previous ocean-only and intermediate-complexity climate model studies, with an expansion and invigoration of the Antarctic meridional overturning, along with a slowdown in North Atlantic Deep Water (NADW) production. This results in a dominance of Southern Ocean poleward geostrophic flow and Antarctic sinking when DP is closed. However, within just a decade of DP closure, the increased southward heat transport has melted back a substantial fraction of Antarctic sea ice. At the same time the polar oceans warm by 4°–6°C on the zonal mean, and the maximum strength of the Southern Hemisphere westerlies weakens by ≃10%. These effects, not captured in models without ice and atmosphere feedbacks, combine to force Antarctic Bottom Water (AABW) to warm and freshen, to the point that this water mass becomes less dense than NADW. This leads to a marked contraction of the Antarctic overturning, allowing NADW to ventilate the abyssal ocean once more. Poleward heat transport settles back to very similar values as seen in the unperturbed DP open case. Yet remarkably, the equilibrium climate in the closed DP configuration retains a strong Southern Hemisphere warming, similar to past studies with no dynamic atmosphere. However, here it is ocean–atmosphere–ice feedbacks, primarily the ice-albedo feedback and partly the weakened midlatitude jet, not a vigorous southern sinking, which maintain the warm polar oceans. This demonstrates that DP closure can drive a hemisphere-scale warming with polar amplification, without the presence of any vigorous Southern Hemisphere overturning circulation. Indeed, DP closure leads to warming that is sufficient over the West Antarctic Ice Sheet region to inhibit ice-sheet growth. This highlights the importance of the DP gap, Antarctic sea ice, and the associated ice-albedo feedback in maintaining the present-day glacial state over Antarctica.

Full access