Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: Y. Chang x
  • All content x
Clear All Modify Search
Yu-Lin Chang and L.-Y. Oey

Abstract

Recent studies on Loop Current’s variability in the Gulf of Mexico suggest that the system may behave with some regularity forced by the biannually varying trade winds. The process is analyzed here using a reduced-gravity model and satellite data. The model shows that a biannual signal is produced by vorticity and transport fluctuations in the Yucatan Channel because of the piling up and retreat of warm water in the northwestern Caribbean Sea forced by the biannually varying trade wind. The Loop grows and expands with increased northward velocity and cyclonic vorticity of the Yucatan Current, and eddies are shed when these are near minima. Satellite sea surface height (SSH) data from 1993 to 2010 are analyzed. These show, consistent with the reduced-gravity experiments and previous studies, a (statistically) significant asymmetric biannual variation of the growth and wane of Loop Current: strong from summer to fall and weaker from winter to spring; the asymmetry being due to the asymmetry that also exists in the long-term observed wind. The biannual signal is contained in the two leading EOF modes, which together explain 47% of the total variance, and which additionally describe the eddy shedding and westward propagation from summer to fall. The EOFs also show connectivity between Loop Current and Caribbean Sea’s variability by mass and vorticity fluxes through the Yucatan Channel.

Full access
G. T. J. Chen, Y. J. Wang, and C-P. Chang

Abstract

This study compares the systematic errors of 36-h surface cyclone and anticyclone forecasts for two operational numerical weather prediction models over East Asia and the western North Pacific Ocean: the U.S. Navy's Operational Global Atmospheric Prediction System (NOGAPS), and Japan Meteorological Agency's Fine-mesh Limited Area Model (JFLM). The study is carried out for the 1983 Mei-Yu season (May–July), which is the wettest season over East Asia based on nontyphoon-produced rainfall. All available 0000 and 1200 GMT forecast runs are evaluated against an independent dataset of subjective analysis produced operationally by the Central Weather Bureau, Taipei. The mean position errors, mean central pressure errors and forecast skill indices for both cyclones and anticyclones in the NOGAPS and JFLM models are examined.

Both NOGAPS and JFLM models are more likely to underforecast than to overforecast the existence and/or genesis of both cyclones and anticyclones. However, over the Tibetan Plateau and its vicinity, both models tend to overforecast the existence and/or genesis of cyclones. They also forecast both cyclones and anticyclones too slow and too far to the north.

Diurnal variations in central pressure errors suggest that the error source is the lack of radiation processes in the JFLM and too strong a diurnal cycle of radiation processes in NOGAPS. Also, the failure to treat adequately the bulk effects of cumulus convection seems to be primarily responsible for the poor forecasts of oceanic cyclone development.

Full access
Margaret A. Lemone, Tae Y. Chang, and Christopher Lucas

Abstract

No abstract available.

Full access
S. Zhang, Y.-S. Chang, X. Yang, and A. Rosati

Abstract

Given a biased coupled model and the atmospheric and oceanic observing system, maintaining a balanced and coherent climate estimation is of critical importance for producing accurate climate analysis and prediction initialization. However, because of limitations of the observing system (e.g., most of the oceanic measurements are only available for the upper ocean), directly evaluating climate estimation with real observations is difficult. With two coupled models that are biased with respect to each other, a biased twin experiment is designed to simulate the problem. To do that, the atmospheric and oceanic observations drawn from one model based on the modern climate observing system are assimilated into the other. The model that produces observations serves as the truth and the degree by which an assimilation recovers the truth steadily and coherently is an assessment of the impact of the data constraint scheme on climate estimation. Given the assimilation model bias of warmer atmosphere and colder ocean, where the atmospheric-only (oceanic only) data constraint produces an overcooling (overwarming) ocean through the atmosphere–ocean interaction, the constraints with both atmospheric and oceanic data create a balanced and coherent ocean estimate as the observational model. Moreover, the consistent atmosphere–ocean constraint produces the most accurate estimate for North Atlantic Deep Water (NADW), whereas NADW is too strong (weak) if the system is only constrained by atmospheric (oceanic) data. These twin experiment results provide insights that consistent data constraints of multiple components are very important when a coupled model is combined with the climate observing system for climate estimation and prediction initialization.

Full access
John C. H. Chiang, C.-Y. Chang, and M. F. Wehner

Abstract

Multidecadal and longer changes to the Atlantic interhemispheric sea surface temperature gradient (AITG) in phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical simulations are investigated. Observations show a secular trend to this gradient over most of the twentieth century, with the southern lobe warming faster relative to its northern counterpart. A previous study of phase 3 of the CMIP (CMIP3) suggests that this trend is partially forced by anthropogenic sulfate aerosols. This analysis collectively confirms the partially forced trend for the CMIP5 and by anthropogenic aerosols. Like the CMIP3, the CMIP5 also simulates a reversal in the AITG trend in the late 1970s, which was attributed to a leveling off of the anthropogenic aerosol influence and increased influence of greenhouse gases in the late twentieth century. Two (of 25) CMIP5 models, however, systematically simulate a twentieth-century trend opposite to observed, leading to some uncertainty regarding the forced nature of the AITG trend. The observed AITG also exhibits a pronounced multidecadal modulation on top of the trend, associated with the Atlantic multidecadal oscillation (AMO). Motivated by a recent suggestion that the AMO is a forced response to aerosols, the causes of this multidecadal behavior were also examined. A few of the CMIP5 models analyzed do produce multidecadal AITG variations that are correlated to the observed AMO-like variation, but only one, the Hadley Centre Global Environmental Model, version 2 (HadGEM2), systematically simulates AMO-like behavior with both the requisite amplitude and phase. The CMIP5 simulations thus point to a robust aerosol influence on the historical AITG trend but not to the AMO-like multidecadal behavior.

Full access
J. C. H. Chiang, Y. Fang, and P. Chang

Abstract

The authors argue that a reduction to the stochastic forcing of the El Niño–Southern Oscillation (ENSO) wrought by Pacific-wide climate changes in response to mid-Holocene (6000 BP) orbital forcing is a viable hypothesis for the observed reduction of ENSO activity during that time. This conclusion is based on comprehensive analysis of an intermediate coupled model that achieves significant reduction to ENSO variance in response to mid-Holocene orbital forcing. The model’s excellent simulation of the tropical Pacific interannual variability lends credibility to the results.

Idealized simulations demonstrate that the mid-Holocene influence is communicated to the tropical Pacific largely via climate changes outside of the tropical Pacific, rather than from insolation changes directly on the tropical Pacific. This is particularly true for changes to the ENSO, but also with changes to the cold tongue annual cycle. Previously proposed mechanisms for teleconnected mid-Holocene ENSO changes, including forcing of ENSO by a strengthened Asian summer monsoon and an increase in the annual cycle forcing on the tropical Pacific leading to a reduction in ENSO activity by frequency entrainment, do not appear to occur in these simulations. Rather, the authors show that the modeled mid-Holocene climate exhibits a pronounced reduction in Pacific meridional mode activity that has been recently shown to be a forcing on ENSO, though the reasons for this reduction are still to be explained.

The contrasting nature of the results compared to previous studies highlights the effect of the prevailing ENSO paradigm on this problem. By showing that an externally forced ENSO model is equally capable of explaining mid-Holocene ENSO reduction as its nonlinear, weakly chaotic counterpart, it is demonstrated that the mid-Holocene ENSO data point cannot yet discriminate between these two paradigms of ENSO.

Full access
K. M. Lin, J. Y. Juang, Y.-W. Shiu, and L. F. W. Chang

Abstract

In air quality models, daytime sensible and latent heat fluxes are important factors that influence atmospheric stability. These heat fluxes originate from heat that is generated from solar radiation and is then released from the earth’s surface. Different climates and surface conditions may lead to varying heat flux distributions. Because latent heat flux is influenced by both solar radiation and plant evapotranspiration, it is often difficult to estimate. The objective of this study was to apply thermodynamic concepts to determine an equation that could be used to estimate the Bowen ratio in the absence of latent and sensible heat fluxes. This study showed that, using two meteorological parameters (i.e., absolute temperature and relative humidity), the Bowen ratio for the climate in Taiwan could be obtained and then used to estimate sensible and latent heat fluxes in a series of equations. Furthermore, the approach’s applicability was determined by testing the sensitivities of parameters used in the Bowen ratio equation. A comparison of results determined through the Priestly–Taylor and Penman–Monteith methods with meteorological data for Yilan and Chiayi counties, Taiwan, for the 2006 summer and winter is performed. The results of this study showed that, among the simulated latent heat fluxes in the two study areas, the values estimated using the Penman–Monteith method were the largest, followed by those estimated using the Priestly–Taylor method. Values estimated using the Bowen ratio method were the smallest. Predictions generated by the proposed Bowen ratio equation correlated with those generated by the other models; however, the values estimated with the Priestly–Taylor method were closest to the simulated values.

Full access
J. C. Hubbert, S. M. Ellis, W.-Y. Chang, and Y.-C. Liou

Abstract

In this paper, experimental X-band polarimetric radar data from simultaneous transmission of horizontal (H) and vertical (V) polarizations (SHV) are shown, modeled, and microphysically interpreted. Both range–height indicator data and vertical-pointing X-band data from the Taiwan Experimental Atmospheric Mobile-Radar (TEAM-R) are presented. Some of the given X-band data are biased, which is very likely caused by cross coupling of the H and V transmitted waves as a result of aligned, canted ice crystals. Modeled SHV data are used to explain the observed polarimetric signatures. Coincident data from the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) are presented to augment and support the X-band polarimetric observations and interpretations. The polarimetric S-Pol data are obtained via fast-alternating transmission of horizontal and vertical polarizations (FHV), and thus the S-band data are not contaminated by the cross coupling (except the linear depolarization ratio LDR) observed in the X-band data. The radar data reveal that there are regions in the ice phase where electric fields are apparently aligning ice crystals near vertically and thus causing negative specific differential phase K dp. The vertical-pointing data also indicate the presence of preferentially aligned ice crystals that cause differential reflectivity Z dr and differential phase ϕ dp to be strong functions of azimuth angle.

Full access
F.-H. Xu, Y.-L. Chang, L.-Y. Oey, and P. Hamilton

Abstract

Recent studies suggest that as the trade wind in the Caribbean Sea weakens from summer to fall, conditions become more favorable for the Loop Current in the Gulf of Mexico to shed an anticyclonic ring. This idea originated with observations showing a preference for more eddies from summer through fall, and it was confirmed using multidecadal model experiments. Here, the hypothesis is further tested by studying the dynamics of a specific eddy-shedding event in summer 2011 using a model experiment initialized with observation-assimilated reanalysis and forced by reanalysis wind from NCEP. Eddy shedding in July 2011 is shown to follow the weakening of the trade wind and Yucatan transport in late June. The shedding time is significantly earlier than can be explained based on reduced-gravity Rossby wave dynamics. Altimetry and model data are analyzed to show that empirical orthogonal function modes 1 + 2 dominate the reduced-gravity process, while higher modes contain the coupling of the Loop Current with deep layer underneath. The Loop’s westward expansion at incipient shedding induces a deep cyclonic gyre in the eastern Gulf, embedded within which are small cyclones caused by the baroclinic instability of the strongly sheared current north of the Campeche Bank. The associated deep upwelling and upper-layer divergence from these cyclonic circulations accelerate eddy shedding.

Full access
C.-Y. Chang, J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy

Abstract

The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multidecadal variation associated with the Atlantic multidecadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century.

Full access