Search Results

You are looking at 21 - 30 of 33 items for

  • Author or Editor: Bin Zhang x
  • All content x
Clear All Modify Search
Ming-Yang He, Hong-Bo Liu, Bin Wang, and Da-Lin Zhang

Abstract

In this study, the three-dimensional structures and diurnal evolution of a typical low-level jet (LLJ) with a maximum speed of 24 m s−1 occurring in the 850–800-hPa layer are examined using both large-scale analysis and a high-resolution model simulation. The LLJ occurred on the eastern foothills of the Yun-Gui Plateau in south China from 1400 LST 29 June to 1400 LST 30 June 2003. The effects of surface radiative heating, topography, and latent heat release on the development of the LLJ case are also studied. Results show that a western Pacific Ocean subtropical high and a low pressure system on the respective southeast and northwest sides of the LLJ provide a favorable large-scale mean pressure pattern for the LLJ development. The LLJ reaches its peak intensity at 850 hPa near 0200 LST with wind directions veering from southerly before sunset to southwesterly at midnight. A hodograph at the LLJ core shows a complete diurnal cycle of the horizontal wind with a radius of 5.5 m s−1. It is found that in an LLJ coordinates system the along-LLJ geostrophic component regulates the distribution and 65% of the intensity of LLJ, whereas the ageostrophic component contributes to the clockwise rotation, thus leading to the formation and weakening of the LLJ during night- and daytime, respectively. Numerical sensitivity experiments confirm the surface radiative heating as the key factor in determining the formation of the nocturnal LLJ. The existence of the Yun-Gui Plateau, and the downstream condensational heating along the mei-yu front play secondary roles in the LLJ formation.

Full access
Weiguo Wang, Bin Liu, Lin Zhu, Zhan Zhang, Avichal Mehra, and Vijay Tallapragada

Abstract

A new physically based horizontal mixing-length formulation is introduced and evaluated in the Hurricane Weather and Research Forecasting (HWRF) Model. Recent studies have shown that the structure and intensity of tropical cyclones (TCs) simulated by numerical models are sensitive to horizontal mixing length in the parameterization of horizontal diffusion. Currently, many numerical models including the operational HWRF Model formulate the horizontal mixing length as a fixed fraction of grid spacing or a constant value, which is not realistic. To improve the representation of the horizontal diffusion process, the new formulation relates the horizontal mixing length to local wind and its horizontal gradients. The resulting horizontal mixing length and diffusivity are much closer to those derived from field measurements. To understand the impact of different mixing-length formulations, we analyze the evolutions of an idealized TC simulated by the HWRF Model with the new formulation and with the current formulation (i.e., constant values) of horizontal mixing length. In two real-case tests, the HWRF Model with the new formulation produces the intensity and track forecasts of Hurricanes Harvey (2017) and Lane (2018) that are much closer to observations. Retrospective runs of hundreds of forecast cycles of multiple hurricanes show that the mean errors in intensity and track simulated by HWRF with the new formulation can be reduced approximately by 10%.

Restricted access
Zengxin Zhang, Chong-Yu Xu, Bin Yong, Junjun Hu, and Zhonghua Sun

Abstract

Droughts are becoming the most expensive natural disasters in former Sudan and have exerted serious impacts on local economic development and ecological environment. The purpose of this paper is to improve understanding of the temporal and spatial variations of droughts by using the Standard Precipitation Index (SPI) and to discuss their relevance to the changes of hydrological variables in Sudan. The analysis results show that 1) droughts start in the late 1960s in Sudan and severe droughts occur during the 1980s in different regions of Sudan—the annual precipitation and soil moisture also reveal the evidence that the droughts prevail since the late 1960s; 2) the greater negative soil moistures anomalies are found in central and southern Sudan during the rainy seasons while greater negative anomalies of precipitation occur only in central Sudan compared between 1969–2009 and 1948–68; 3) the precipitation recycling ratio averaged over 1948–2009 decreases from south to north and the percentage of local actual evapotranspiration to local precipitation in dry conditions is greater than that in wet conditions; and 4) the highest (second highest) correlations appear between soil moisture and precipitation (actual evapotranspiration) and the significant decreases in annual soil moisture are associated with the decrease of annual precipitation and the increase of annual temperature. This suggests that continuous droughts in Sudan are caused jointly by the decrease of precipitation and the increase of temperature in the region.

Full access
Zhetao Tan, Franco Reseghetti, John Abraham, Rebecca Cowley, Keyi Chen, Jiang Zhu, Bin Zhang, and Lijing Cheng

Abstract

Expendable bathythermographs (XBTs) have been widely deployed for ocean monitoring since the late 1960s. Improving the quality of XBT data is a vital task in climatology. Many factors (e.g., temperature, probe type, and manufacturing time) have been identified as major influences of XBT systematic bias. In addition, the recording system (RS) has long been suspected as another factor. However, this factor has not been taken into account in any global XBT correction schemes, partly because its impact is poorly understood. Here, based on analysis of an XBT–CTD side-by-side dataset and a global collocated reference dataset, the influence of RSs on the pure temperature error (PTE) is examined. Results show a clear time dependency of PTE on the RS, with maximum values occurring in the 1970s. In addition, the method used to convert thermistor resistance into temperature in the RS (using a resistance–temperature equation) has changed over time. These changes, together with the decadal changes in RSs, might contribute a small error (10% on average) to the RS dependency. Here, an improvement of global XBT bias correction that accounts for the RS dependency is proposed. However, more than 70% of historical global XBT data are missing RS-type information. We investigate several assumptions about the temporal distribution of RS types, and all scenarios lead to at least a ~50% reduction in the time variation of PTE compared with the uncorrected data. Therefore, the RS dependency should be taken into account in updated XBT correction schemes, which would have further implications for climatology studies.

Restricted access
Andrew Hazelton, Zhan Zhang, Bin Liu, Jili Dong, Ghassan Alaka, Weiguo Wang, Tim Marchok, Avichal Mehra, Sundararaman Gopalakrishnan, Xuejin Zhang, Morris Bender, Vijay Tallapragada, and Frank Marks

Abstract

NOAA’s Hurricane Analysis and Forecast System (HAFS) is an evolving FV3-based hurricane modeling system that is expected to replace the operational hurricane models at the National Weather Service. Supported by the Hurricane Forecast Improvement Program (HFIP), global-nested and regional versions of HAFS were run in real time in 2019 to create the first baseline for the HAFS advancement. In this study, forecasts from the global-nested configuration of HAFS (HAFS-globalnest) are evaluated and compared with other operational and experimental models. The forecasts by HAFS-globalnest covered the period from July through October during the 2019 hurricane season. Tropical cyclone (TC) track, intensity, and structure forecast verifications are examined. HAFS-globalnest showed track skill superior to several operational hurricane models and comparable intensity and structure skill, although the skill in predicting rapid intensification was slightly inferior to the operational model skill. HAFS-globalnest correctly predicted that Hurricane Dorian would slow and turn north in the Bahamas and also correctly predicted structural features in other TCs such as a sting jet in Hurricane Humberto during extratropical transition. Humberto was also a case where HAFS-globalnest had better track forecasts than a regional version of HAFS (HAFS-SAR) due to a better representation of the large-scale flow. These examples and others are examined through comparisons with airborne tail Doppler radar from the NOAA WP-3D to provide a more detailed evaluation of TC structure prediction. The results from this real-time experiment motivate several future model improvements, and highlight the promise of HAFS-globalnest for improved TC prediction.

Restricted access
Weiguo Wang, Jason A. Sippel, Sergio Abarca, Lin Zhu, Bin Liu, Zhan Zhang, Avichal Mehra, and Vijay Tallapragada

Abstract

This note describes a modification of the boundary layer parameterization scheme in the Hurricane Weather Research and Forecasting (HWRF) Model, which improves the simulations of low-level wind and surface inflow angle in the eyewall area and has been implemented in the HWRF system and used in the operational system since 2016. The modification is on an observation-based adjustment of eddy diffusivity previously implemented in the model. It is needed because the previous adjustment resulted in a discontinuity in the vertical distribution of eddy diffusivity near the surface-layer top, which increases the friction within the surface layer and compromises the surface-layer constant-flux assumption. The discontinuity affects the simulation of storm intensity and intensification, one of the main metrics of model performance, particularly in strong tropical cyclones. This issue is addressed by introducing a height-dependent adjustment so that the vertical profile of eddy diffusivity is continuous throughout the boundary layer. It is shown that the implementation of the modification results in low-level winds and surface inflow angles in the storm’s eyewall region closer to observations.

Full access
Xi-Bin Ji, Wen-Zhi Zhao, Er-Si Kang, Zhi-Hui Zhang, Bo-Wen Jin, and Li-Wen Zhao

Abstract

Continuous eddy covariance measurements of CO2, water vapor, and heat fluxes were obtained from a maize field within an oasis in northwest China from 1 May 2008 to 30 April 2009. The experimental setup used was shown to provide reliable flux estimates on the basis of cross-checks made using various quality tests of the flux data. Results show that the highest half-hourly CO2 fluxes (Fc) were −55.7 and 6.9 μmol m−2 s−1 during the growing and nongrowing seasons, respectively. The daily net ecosystem exchange of carbon (NEE) ranged from −14.7 to 2.2 g C m−2 day−1 during the growing season; however, the daily NEE fell to between 0.2 and 2.1 g C m−2 day−1 during the nongrowing season. The annual NEE calculated by integrating flux measurements and filling in missing and spurious data was about −487.9 g C m−2. The total NEE during the growing season (−692.9 g C m−2) and the annual NEE were in the middle of the range, when compared with results obtained for maize fields in different studies and regions, whereas the differences between the off-season NEE from this study (205.0 g C m−2) and those defined in previous studies were very small. In addition, the seasonal variations in energy balance and evapotranspiration over the maize field were also addressed.

Full access
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Dongliang Luo, Bin Cao, Hang Su, Huijun Jin, and Qingbai Wu

Abstract

Variability of active layer thickness (ALT) in permafrost regions is critical for assessments of climate change, water resources, and engineering applications. Detailed knowledge of ALT variations is also important for studies on ecosystem, hydrological, and geomorphological processes in cold regions. The primary objective of this study is therefore to provide a comprehensive 1971–2000 climatology of ALT and its changes across the entire Northern Hemisphere from 1850 through 2100. To accomplish this, in situ observations, the Stefan solution based on a thawing index, and the edaphic factor (E factor) are employed to calculate ALT. The thawing index is derived from (i) the multimodel ensemble mean of 16 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) over 1850–2005, (ii) three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) for 2006–2100, and (iii) Climatic Research Unit (CRU) gridded observations for 1901–2014. The results show significant spatial variability in in situ ALT that generally ranges from 40 to 320 cm, with some extreme values of 900 cm in the Alps. The differences in the ALT climatology between the three RCPs and the historical experiments ranged from 0 to 200 cm. The biggest increases, of 120–200 cm, are on the Qinghai–Tibetan Plateau, while the smallest increases of less than 20 cm are in Alaska. Averaged over all permafrost regions, mean ALT from CMIP5 increased significantly at 0.57 ± 0.04 cm decade−1 during 1850–2005, while 2006–2100 projections show ALT increases of 0.77 ± 0.08 cm decade−1 for RCP2.6, 2.56 ± 0.07 cm decade−1 for RCP4.5, and 6.51 ± 0.07 cm decade−1 for RCP8.5.

Full access
Hao He, Hailong Wang, Zhaoyong Guan, Haishan Chen, Qiang Fu, Muyin Wang, Xiquan Dong, Chunguang Cui, Likun Wang, Bin Wang, Gang Chen, Zhanqing Li, and Da-Lin Zhang
Free access
Bin Wang, Sun-Seon Lee, Duane E. Waliser, Chidong Zhang, Adam Sobel, Eric Maloney, Tim Li, Xianan Jiang, and Kyung-Ja Ha

Abstract

Realistic simulations of the Madden–Julian oscillation (MJO) by global climate models (GCMs) remain a great challenge. To evaluate GCM simulations of the MJO, the U.S. CLIVAR MJO Working Group developed a standardized set of diagnostics, providing a comprehensive assessment of statistical properties of the MJO. Here, a suite of complementary diagnostics has been developed that provides discrimination and assessment of MJO simulations based on the perception that the MJO propagation has characteristic dynamic and thermodynamic structures. The new dynamics-oriented diagnostics help to evaluate whether a model produces eastward-propagating MJOs for the right reasons. The diagnostics include 1) the horizontal structure of boundary layer moisture convergence (BLMC) that moistens the lower troposphere to the east of a convection center, 2) the preluding eastward propagation of BLMC that leads the propagation of MJO precipitation by about 5 days, 3) the horizontal structure of 850-hPa zonal wind and its equatorial asymmetry (Kelvin easterly versus Rossby westerly intensity), 4) the equatorial vertical–longitudinal structure of the equivalent potential temperature and convective instability index that reflects the premoistening and predestabilization processes, 5) the equatorial vertical–longitudinal distribution of diabatic heating that reflects the multicloud structure of the MJO, 6) the upper-level divergence that reflects the influence of stratiform cloud heating, and 7) the MJO available potential energy generation that reflects the amplification and propagation of an MJO. The models that simulate better three-dimensional dynamic and thermodynamic structures of MJOs generally reproduce better eastward propagations. This evaluation identifies a number of shortcomings in representing dynamical and heating processes relevant to the MJO simulation and reveals potential sources of the shortcomings.

Open access