Search Results

You are looking at 21 - 30 of 60 items for

  • Author or Editor: Christian D. Kummerow x
  • All content x
Clear All Modify Search
Stephen W. Nesbitt, Edward J. Zipser, and Christian D. Kummerow

Abstract

An evaluation of the version-5 precipitation radar (PR; algorithm 2A25) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; algorithm 2A12) rainfall products is performed across the Tropics in two ways: 1) by comparing long-term TRMM rainfall products with Global Precipitation Climatology Centre (GPCC) global rain gauge analyses and 2) by comparing the rainfall estimates from the PR and TMI on a rainfall feature-by-feature basis within the narrow swath of the PR using a 1-yr database of classified precipitation features (PFs). The former is done to evaluate the overall biases of the TMI and PR relative to “ground truth” to examine regional differences in the estimates; the latter allows a direct comparison of the estimates with the same sampling area, also identifying relative biases as a function of storm type. This study finds that the TMI overestimates rainfall in most of the deep Tropics and midlatitude warm seasons over land with respect to both the GPCC gauge analysis and the PR (which agrees well with the GPCC gauges in the deep Tropics globally), in agreement with past results. The PR is generally higher than the TMI in midlatitude cold seasons over land areas with gauges. The analysis by feature type reveals that the TMI overestimates relative to the PR are due to overestimates in mesoscale convective systems and in most features with 85-GHz polarization-corrected temperature of less than 250 K (i.e., with a significant optical depth of precipitation ice). The PR tended to be higher in PFs without an ice-scattering signature of less than 250 K. Normalized for a subset of features with a large rain volume (exceeding 104 mm h−1 km2) independent of the PF classification, features with TMI > PR in the Tropics tended to have a higher fraction of stratiform rainfall, higher IR cloud tops, more intense radar profiles and 85-GHz ice-scattering signatures, and larger rain areas, whereas the converse is generally true for features with PR > TMI. Subtropical-area PF bias characteristics tended not to have such a clear relationship (especially over the ocean), a result that is hypothesized to be due to the influence of more variable storm environments and the presence of frontal rain. Melting-layer effects in stratiform rain and a bias in the ice-scattering–rain relationship were linked to the TMI producing more rainfall than the PR. However, noting the distinct characteristic biases Tropics-wide by feature type, this study reveals that accounting for regime-dependent biases caused by the differing horizontal and vertical morphologies of precipitating systems may lead to a reduction in systematic relative biases in a microwave precipitation algorithm.

Full access
David I. Duncan, Christian D. Kummerow, and Gregory S. Elsaesser

Abstract

Life cycles of deep convective raining systems are documented through use of a Lagrangian tracking algorithm applied to high-resolution Climate Prediction Center morphing technique (CMORPH) rainfall data, permitting collocation with related environmental ancillary fields and the International Satellite Cloud Climatology Project (ISCCP) cloud states (). System life cycles are described in terms of propagation speed, duration, and dominant cloud structures. Tracked systems are usually associated with the ISCCP weather state 1 (WS1) deep convection cloud state and an independent, microwave-based deep convective precipitation regime developed here. The distribution and characteristics of tracked systems are found to be similar between ocean basins in terms of system speed and duration, with westward-propagating systems predominant in every basin.

The effects that these systems have on environmental parameters are assessed, stratified according to their average propagation speed and by ocean basin. Regardless of system speed the net effect on the environment is similar, with the largest difference being how quickly changes occur, with net surface radiation decreasing about 150 W m−2 and total precipitable water perturbed by 5–7 kg m−2; sea surface temperature (SST) drops 0.2°–0.3°C over 24 h, with system speed affecting how long SSTs remain depressed. The observed drop in SST is partly caused by the presence of widespread, optically thick clouds that greatly decrease the net surface radiative flux. Quick changes in SSTs caused by tracked systems are captured by buoys but not represented well in gridded SST products, as these regions remain largely under the precipitating cloud cover associated with these systems.

Full access
Rebecca A. Bolinger, Christian D. Kummerow, and Nolan J. Doesken

Abstract

Previous research has shown that the temperature and precipitation variability in the Upper Colorado River basin (UCRB) is correlated with large-scale climate variability [i.e., El Niño–Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO)]. But this correlation is not very strong, suggesting the need to look beyond the statistics. Looking at monthly contributions across the basin, results show that February is least sensitive to variability, and a wet October could be a good predictor for a wet season. A case study of a wet and a dry year (with similar ENSO/PDO conditions) shows that the occurrence of a few large accumulating events is what drives the seasonal variability, and these large events can happen under a variety of synoptic conditions. Looking at several physical factors that can impact the amount of accumulation in any given event, it is found that large accumulating events (>10 mm in one day) are associated with westerly winds at all levels, higher wind speeds at all levels, and greater amounts of total precipitable water. The most important difference between a large accumulating and small accumulating event is the presence of a strong (>4 m s−1) low-level westerly wind. Because much more emphasis should be given to this more local feature, as opposed to large-scale variability, an accurate seasonal forecast for the basin is not producible at this time.

Full access
William S. Olson, Ye Hong, Christian D. Kummerow, and Joseph Turk

Abstract

Observational and modeling studies have revealed the relationships between convective–stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques that can be used to quantify the area coverage of convective or stratiform rainfall could provide useful information regarding the dynamic and thermodynamic processes in these systems. In the current study, two methods for deducing the area coverage of convective precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitation is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5-GHz radiances to estimate the fraction of the radiometer footprint covered by convection. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction.

Based upon observations of 10 organized convective systems over ocean and nine systems over land, instantaneous, 0.5°-resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are compared with nearly coincident estimates from the TRMM precipitation radar (PR). TMI convective area fraction estimates are low-biased relative to PR estimates, with TMI–PR correlation coefficients of 0.78 and 0.84 over ocean and land surfaces, respectively. TMI monthly average convective area percentages in the Tropics and subtropics from February 1998 are greatest along the intertropical convergence zone and in the continental regions of the Southern (summer) Hemisphere. Although convective area percentages from the TMI are systematically lower than those derived from the PR, the monthly patterns of convective coverage are similar. Systematic differences in TMI and PR convective area percentages do not show any clear correlation or anticorrelation with differences in retrieved rain depths, and so discrepancies between TRMM version-5 TMI- and PR-retrieved rain depths are likely due to other sensor or algorithmic differences.

Full access
Thomas L. Bell, Prasun K. Kundu, and Christian D. Kummerow

Abstract

Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote sensing error and, especially in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that rms random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain gauge and radar data. This relationship is examined using Special Sensor Microwave Imager (SSM/I) satellite data obtained over the western equatorial Pacific during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. Rms error inferred directly from SSM/I rainfall estimates is found to be larger than was predicted from surface data and to depend less on local rain rate than was predicted. Preliminary examination of Tropical Rainfall Measuring Mission (TRMM) microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be computed directly from the satellite data.

Full access
Hirohiko Masunaga, Tristan S. L’Ecuyer, and Christian D. Kummerow

Abstract

Regional and temporal variability in the vertical and horizontal characteristics of tropical precipitating clouds are investigated using the Precipitation Radar (PR) and the Visible and Infrared Scanner (VIRS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. The present study focuses on the three oceanic regions (west, central, and east Pacific) together with two continental regions for comparison and the two separate time periods (February 1998 and February 2000) under different phases of the El Niño–Southern Oscillation (ENSO) in order to examine regional and ENSO-related variations. The height spectrums of storms are investigated in terms of radar echo-top height and infrared brightness temperature. The variability in the spectrum clearly correlates with the large-scale circulation and its ENSO-related change. On the basis of the height spectrum, storm systems are classified into the four categories of shallow, cumulus congestus, deep stratiform, and deep convective. The deep stratiform and deep convective categories, both of which have very cold cloud tops, are differentiated by radar echo-top heights so that deep convective systems are accompanied with an appreciable amount of large frozen particles aloft. While shallow events are dominant in the probability of occurrence over relatively cold oceans, deep convective systems take their place for warmer sea surface temperatures (SSTs). The turnover occurs at the SST threshold of 28°–29°C for all the oceanic regions and years investigated except the west Pacific in 2000, for which deep convective systems prevail over the entire range of SST. Rain correlation-scale length (RCSL) and cloud correlation-scale length (CCSL) are introduced as statistical indicators of the horizontal scale of storms. While the RCSL is 8–18 km for shallow- and cumulus congestus–type clouds without significant regional and temporal variations, the RCSL and CCSL associated with deep stratiform and deep convective systems consistently exceed 100 km and exhibit a systematic variability. The RCSL and CCSL in the central and east Pacific, particularly, increase significantly in the El Niño year.

Full access
Anita D. Rapp, Christian Kummerow, Wesley Berg, and Brian Griffith

Abstract

Significant controversy surrounds the adaptive infrared iris hypothesis put forth by Lindzen et al., whereby tropical anvil cirrus detrainment is hypothesized to decrease with increasing sea surface temperature (SST). This dependence would act as an iris, allowing more infrared radiation to escape into space and inhibiting changes in the surface temperature. This hypothesis assumes that increased precipitation efficiency in regions of higher sea surface temperatures will reduce cirrus detrainment. Tropical Rainfall Measuring Mission (TRMM) satellite measurements are used here to investigate the adaptive infrared iris hypothesis. Pixel-level Visible and Infrared Scanner (VIRS) 10.8-μm brightness temperature data and precipitation radar (PR) rain-rate data from TRMM are collocated and matched to determine individual convective cloud boundaries. Each cloudy pixel is then matched to the underlying SST. This study examines single- and multicore convective clouds separately to directly determine if a relationship exists between the size of convective clouds, their precipitation, and the underlying SSTs. In doing so, this study addresses some of the criticisms of the Lindzen et al. study by eliminating their more controversial method of relating bulk changes of cloud amount and SST across a large domain in the Tropics. The current analysis does not show any significant SST dependence of the ratio of cloud area to surface rainfall for deep convection in the tropical western and central Pacific. Results do, however, suggest that SST plays an important role in the ratio of cloud area and surface rainfall for warm rain processes. For clouds with brightness temperatures between 270 and 280 K, a net decrease in cloud area normalized by rainfall of 5% per degree SST was found.

Full access
Matthew D. Lebsock, Christian Kummerow, and Graeme L. Stephens

Abstract

Anomalies of precipitation, cloud, thermodynamic, and radiation variables are analyzed on the large spatial scale defined by the tropical oceans. In particular, relationships between the mean tropical oceanic precipitation anomaly and radiative anomalies are examined. It is found that tropical mean precipitation is well correlated with cloud properties and radiative fields. In particular, the tropical mean precipitation anomaly is positively correlated with the top of the atmosphere reflected shortwave anomaly and negatively correlated with the emitted longwave anomaly. The tropical mean relationships are found to primarily result from a coherent oscillation of precipitation and the area of high-level cloudiness. The correlations manifest themselves radiatively as a modest decrease in net downwelling radiation at the top of the atmosphere, and a redistribution of energy from the surface to the atmosphere through reduced solar radiation to the surface and decreased longwave emission to space. Integrated over the tropical oceanic domain, the anomalous atmospheric column radiative heating is found to be about 10% of the magnitude of the anomalous latent heating. The temporal signature of the radiative heating is observed in the column mean temperature that indicates a coherent phase-lagged oscillation between atmospheric stability and convection. These relationships are identified as a radiative–convective cloud feedback that is observed on intraseasonal time scales in the tropical atmosphere.

Full access
Hirohiko Masunaga, Tristan S. L’Ecuyer, and Christian D. Kummerow

Abstract

A satellite data analysis is performed to explore the Madden–Julian oscillation (MJO) focusing on the potential roles of the equatorial Rossby (ER) and Kelvin waves. Measurements from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Visible/Infrared Scanner (VIRS) are analyzed in the frequency–wavenumber domain to identify and ultimately filter primary low-frequency modes in the Tropics. The space–time spectrum of deep-storm fraction estimated by PR and VIRS exhibits notable Kelvin wave signals at wavenumbers 5–8, a distinct MJO peak at wavenumbers 1–7 and periods of about 40 days, and a signal corresponding to the ER wave. These modes are separately filtered to study the individual modes and possible relationship among them in the time–longitude space. In 10 cases analyzed here, an MJO event is often collocated with a group of consecutive Kelvin waves as well as an intruding ER wave accompanied with the occasional onset of a stationary convective phase. The spatial and temporal relationship between the MJO and Kelvin wave is clearly visible in a lag composite diagram, while the ubiquity of the ER wave leads to a less pronounced relation between the MJO and ER wave. A case study based on the Geostationary Meteorological Satellite (GMS) imagery together with associated dynamic field captures the substructure of the planetary-scale waves. A cross-correlation analysis confirms the MJO-related cycle that involves surface and atmospheric parameters such as sea surface temperature, water vapor, low clouds, shallow convection, and near-surface wind as proposed in past studies. The findings suggest the possibility that a sequence of convective events coupled with the linear waves may play a critical role in MJO propagation. An intraseasonal radiative–hydrological cycle inherent in the local thermodynamic conditions could be also a potential factor responsible for the MJO by loosely modulating the envelope of the entire propagation system.

Full access
S. Joseph Munchak, Christian D. Kummerow, and Gregory Elsaesser

Abstract

Raindrop size distribution (DSD) retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar–radiometer algorithm over the oceans equatorward of 35° are examined for relationships with variables describing properties of the vertical precipitation profile, mesoscale organization, and background environment. In general, higher freezing levels and relative humidities (tropical environments) are associated with smaller reflectivity-normalized median drop size (ϵ DSD) than in the extratropics. Within the tropics, the smallest ϵ DSD values are found in large, shallow convective systems where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest ϵ DSD values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. These relationships are formally attributed to variables describing the large-scale environment, mesoscale organization, and profile characteristics via principal component (PC) analysis. The leading three PCs account for 23% of the variance in ϵ DSD at the individual profile level and 45% of the variance in 1°-gridded mean values. The geographical distribution of ϵ DSD is consistent with many of the observed regional reflectivity–rainfall (ZR) relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, midlatitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Ocean intertropical convergence zone.

Full access