Search Results

You are looking at 21 - 30 of 44 items for

  • Author or Editor: Darryn W. Waugh x
  • All content x
Clear All Modify Search
Darryn W. Waugh, Shane R. Keating, and Mei-Lin Chen

Abstract

The relationship between two commonly used diagnostics of stirring in ocean and atmospheric flows, the finite-time Lyapunov exponents λ and relative dispersion R 2, is examined for a simple uniform strain flow and ocean flow inferred from altimetry. Although both diagnostics are based on the separation of initially close particles, the two diagnostics measure different aspects of the flow and, in general, there is not a one-to-one relationship between the diagnostics. For a two-dimensional flow with time-independent uniform strain, there is a single time-independent λ, but there is a wide range of values of R 2 for individual particle pairs. However, it is shown that the upper and lower limits of R 2 for individual pairs, the mean value over a large ensemble of pairs, and the probability distribution function (PDF) of R 2 have simple relationships with λ. Furthermore, these analytical expressions provide a reasonable approximation for the R 2λ relationship in the surface ocean flow based on geostrophic velocities derived from satellite altimeter measurements. In particular, the bimodal distribution, upper and lower bounds, and mean values from the ocean flow are similar to the analytical expressions for a uniform strain flow. How well, as well as over what integration time scale, this holds depends on the spatial and temporal variations within the ocean region being considered.

Full access
Chaim I. Garfinkel, Darryn W. Waugh, and Edwin P. Gerber

Abstract

A dry general circulation model is used to investigate how coupling between the stratospheric polar vortex and the extratropical tropospheric circulation depends on the latitude of the tropospheric jet. The tropospheric response to an identical stratospheric vortex configuration is shown to be strongest for a jet centered near 40° and weaker for jets near either 30° or 50° by more than a factor of 3. Stratosphere-focused mechanisms based on stratospheric potential vorticity inversion, eddy phase speed, and planetary wave reflection, as well as arguments based on tropospheric eddy heat flux and zonal length scale, appear to be incapable of explaining the differences in the magnitude of the jet shift. In contrast, arguments based purely on tropospheric variability involving the strength of eddy–zonal mean flow feedbacks and jet persistence, and related changes in the synoptic eddy momentum flux, appear to explain this effect. The dependence of coupling between the stratospheric polar vortex and the troposphere on tropospheric jet latitude found here is consistent with 1) the observed variability in the North Atlantic and the North Pacific and 2) the trend in the Southern Hemisphere as projected by comprehensive models.

Full access
Lorenzo M. Polvani, Lei Wang, Valentina Aquila, and Darryn W. Waugh

Abstract

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979–97 tropical ozone trends are believed to originate from enhanced upwelling, which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. This study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, argues that trends in ozone-depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone-depleting substances are key drivers of tropical upwelling and, more generally, of the entire Brewer–Dobson circulation.

Full access
Darryn W. Waugh, Chaim I. Garfinkel, and Lorenzo M. Polvani

Abstract

Observational evidence indicates that the southern edge of the Hadley cell (HC) has shifted southward during austral summer in recent decades. However, there is no consensus on the cause of this shift, with several studies reaching opposite conclusions as to the relative role of changes in sea surface temperatures (SSTs) and stratospheric ozone depletion in causing this shift. Here, the authors perform a meta-analysis of the extant literature on this subject and quantitatively compare the results of all published studies that have used single-forcing model integrations to isolate the role of different factors on the HC expansion during austral summer. It is shown that the weight of the evidence clearly points to stratospheric ozone depletion as the dominant driver of the tropical summertime expansion over the period in which an ozone hole was formed (1979 to late 1990s), although SST trends have contributed to trends since then. Studies that have claimed SSTs as the major driver of tropical expansion since 1979 have used prescribed ozone fields that underrepresent the observed Antarctic ozone depletion.

Full access
Darryn W. Waugh, Adam H. Sobel, and Lorenzo M. Polvani

Abstract

The term polar vortex has become part of the everyday vocabulary, but there is some confusion in the media, general public, and science community regarding what polar vortices are and how they are related to various weather events. Here, we clarify what is meant by polar vortices in the atmospheric science literature. It is important to recognize the existence of two separate planetary-scale circumpolar vortices: one in the stratosphere and the other in the troposphere. These vortices have different structures, seasonality, dynamics, and impacts on extreme weather. The tropospheric vortex is much larger than its stratospheric counterpart and exists year-round, whereas the stratospheric polar vortex forms in fall but disappears in the spring of each year. Both vortices can, in some circumstances, play a role in extreme weather events at the surface, such as cold-air outbreaks, but these events are not the consequence of either the existence or gross properties of these two vortices. Rather, cold-air outbreaks are most directly related to transient, localized displacements of the edge of the tropospheric polar vortex that may, in some circumstances, be related to the stratospheric polar vortex, but there is no known one-to-one connection between these phenomena.

Full access
Olga V. Tweedy, Luke D. Oman, and Darryn W. Waugh

Abstract

Seasonal differences in the impact of the Madden–Julian oscillation (MJO) on tropical and extratropical upper troposphere–lower stratosphere (UTLS) temperature, circulation, and trace gases are examined using trace gases (ozone, carbon monoxide, and water vapor) and temperature from measurements from the Microwave Limb Sounder (MLS) and meteorological fields from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). During boreal winter months (November–February), atmospheric fields exhibit a well-known planetary-scale perturbation consistent with the upper-level flow modeled by Gill, with twin high and low pressure extratropical systems associated with a Rossby wave response. However, the circulation anomalies in the UTLS differ during boreal summer months (June–September), when background UTLS circulation north of the equator is dominated by the Asian summer monsoon anticyclone. The twin high and low pressure extratropical systems are much weaker but with a stronger equatorial Kelvin wave front that encircles the globe as the MJO propagates eastward. These differences are explained in terms of seasonal variations in vertically propagating Kelvin waves that strongly depend on the zonal structure of the climatological background winds. The trace gas response to the MJO is strongly coherent with circulation anomalies showing strong seasonal differences. The stronger equatorial Kelvin wave front during the summer produces enhanced upwelling in the tropical tropopause layer, resulting in significant cooling of this region, reduced ozone and water vapor, and enhanced carbon monoxide.

Free access
Clara Orbe, Darryn W. Waugh, Paul A. Newman, and Stephen Steenrod

Abstract

The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or “mean ages” Γ that are significantly larger than their corresponding modal transit times or “modal ages” τ mode, especially in the NH, where Γ ≈ 0.5 yr, while τ mode < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Δ—the second temporal moment of the TTD—to the mean age decreases sharply in the NH from ~2.5 at NH high latitudes to ~0.7 in the Southern Hemisphere (SH). Decreases in Δ/Γ in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5- and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD.

Full access
Darryn W. Waugh, Edward R. Abraham, and Melissa M. Bowen

Abstract

Stirring in the Tasman Sea is examined using surface geostrophic currents derived from satellite altimeter measurements. Calculations of the distribution of finite-time Lyapunov exponents (FTLEs) indicate that the stirring in this region is not uniform and stretching rates over 15 days vary from less than 0.02 day−1 to over 0.3 day−1. These variations occur at both small (∼10 km) and large (∼1000 km) scales and in both cases are linked to dynamical features of the flow. The small-scale variations are related to the characteristics of coherent vortex structures, and there are low FTLEs inside vortices and filaments of high FTLEs in strain-dominated regions surrounding these vortices. Regional variations in the stirring are closely related to variations in mesoscale activity and eddy kinetic energy (EKE). High values of mean FTLE occur in regions of high EKE (highest mean values of around 0.2 day−1 occur in the East Australia Current separation region) whereas small values occur in regions with low EKE (mean values around 0.03 day−1 in the east Tasman Sea). There is a compact relationship between the mean FTLEs and EKE, raising the possibility of using the easily calculated EKE to estimate the stirring. This possibility is even more intriguing because the FTLE distributions can be approximated, for the time scales considered here, by Weibull distributions with shape parameter equal to 1.6, which can be defined from the mean value alone.

Full access
Ju-Mee Ryoo, Takeru Igusa, and Darryn W. Waugh

Abstract

The spatial variations in the probability density functions (PDFs) of relative humidity (RH) in the tropical and subtropical troposphere are examined using observations from the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) instruments together with a simple statistical model. The model, a generalization of that proposed by Sherwood et al., assumes the RH is determined by a combination of drying by uniform subsidence and random moistening events and has two parameters: r, the ratio of the drying time by subsidence to the time between moistening events, and k, a measure of the variability of the moistening events. The observations show that the characteristics of the PDFs vary between the tropics and subtropics, within the tropics or subtropics, and with altitude. The model fits the observed PDFs well, and the model parameters concisely characterize variations in the PDFs and provide information on the processes controlling the RH distributions. In tropical convective regions, the model PDFs that match the observations have large r and small k, indicating rapid random remoistening, which is consistent with direct remoistening in convection. In contrast, in the nonconvective regions there are small r and large k, indicating slower, less random remoistening, consistent with remoistening by slower, quasi-horizontal transport. The statistical model derived will be useful for quantifying differences between, or temporal changes in, RH distributions from different datasets or models, and for examining how changes in physical processes could alter the RH distribution.

Full access
Darryn W. Waugh, Andrew McC. Hogg, Paul Spence, Matthew H. England, and Thomas W. N. Haine

ABSTRACT

Changes in ventilation of the Southern Hemisphere oceans in response to changes in midlatitude westerly winds are examined by analyzing the ideal age tracer from global eddy-permitting ocean–ice model simulations in which there is an abrupt increase and/or a meridional shift in the winds. The age response in mode and intermediate waters is found to be close to linear; the response of a combined increase and shift of peak winds is similar to the sum of the individual responses to an increase and a shift. Further, a barotropic response, following Sverdrup balance, can explain much of the age response to the changes in wind stress. There are similar peak decreases (of around 50 years) in the ideal age for a 40% increase or 2.5° poleward shift in the wind stress. However, while the age decreases throughout the thermocline for an increase in the winds, for a poleward shift in the winds the age increases in the north part of the thermocline and there are decreases in age only south of 35°S. As a consequence, the change in the volume of young water differs, with a 15% increase in the volume of water with ages younger than 50 years for a 40% increase in the winds but essentially no change in this volume for a 2.5° shift. As ventilation plays a critical role in the uptake of carbon and heat, these results suggest that the storage of anthropogenic carbon and heat in mode and intermediate waters will likely increase with a strengthening of the winds, but will be much less sensitive to a meridional shift in the peak wind stress.

Full access