Search Results

You are looking at 21 - 30 of 53 items for

  • Author or Editor: James P. Kossin x
  • All content x
Clear All Modify Search
Jason C. Knievel, David S. Nolan, and James P. Kossin

Abstract

The authors examine the degree of hydrostatic and gradient balances in a mesoscale convective vortex (MCV) in the stratiform region of a mesoscale convective system (MCS) that crossed Oklahoma on 1 August 1996. Results indicate that the MCV was partially unbalanced because the cool layer at the base of its core was too cool and too shallow to balance the tangential winds about the MCV's axis. The apparent imbalance may have been due to strong, unsteady forcing on the vortex; insufficient or unrepresentative data; approximations used in the analysis; or reasons that are unknown.

Full access
James P. Kossin, Brian D. McNoldy, and Wayne H. Schubert

Abstract

A collection of images depicting various swirling patterns within low-level cloud decks in hurricane eyes is presented and described. A possible causal mechanism for the presence of these cloud patterns is suggested by comparison of the observed cloud patterns with the evolution of passive tracers in a simple 2D barotropic model. The model is initialized with a barotropically unstable flow field that imitates the observed flows in hurricanes, and numerical integration of this field simulates vigorous mixing between eye and eyewall. During the mixing process, passive tracers initially embedded in the flow form swirling patterns in the eye that are strikingly similar to cloud patterns often observed in the eyes of hurricanes.

Full access
James P. Kossin, Wayne H. Schubert, and Michael T. Montgomery

Abstract

Intense tropical cyclones often exhibit concentric eyewall patterns in their radar reflectivity. Deep convection within the inner, or primary, eyewall is surrounded by a nearly echo-free moat, which in turn is surrounded by an outer, or secondary ring of deep convection. Both convective regions typically contain well-defined tangential wind maxima. The primary wind maximum is associated with large vorticity just inside the radius of maximum wind, while the secondary wind maximum is usually associated with relatively enhanced vorticity embedded in the outer ring. In contrast, the moat is a region of low vorticity. If the vorticity profile across the eye and inner eyewall is approximated as monotonic, the resulting radial profile of vorticity still satisfies the Rayleigh necessary condition for instability as the radial gradient twice changes sign.

Here the authors investigate the stability of such structures and, in the case of instability, simulate the nonlinear evolution into a more stable structure using a nondivergent barotropic model. Because the radial gradient of vorticity changes sign twice, two types of instability and vorticity rearrangement are identified: 1) instability across the outer ring of enhanced vorticity, and 2) instability across the moat. Type 1 instability occurs when the outer ring of enhanced vorticity is sufficiently narrow and when the circulation of the central vortex is sufficiently weak (compared to the outer ring) that it does not induce enough differential rotation across the outer ring to stabilize it. The nonlinear mixing associated with type 1 instability results in a broader and weaker vorticity ring but still maintains a significant secondary wind maximum. The central vortex induces strong differential rotation (and associated enstrophy cascade) in the moat region, which then acts as a barrier to inward mixing of small (but finite) amplitude asymmetric vorticity disturbances. Type 2 instability occurs when the radial extent of the moat is sufficiently narrow so that unstable interactions may occur between the central vortex and the inner edge of the ring. Because the vortex-induced differential rotation across the ring is large when the ring is close to the vortex, type 2 instability typically precludes type 1 instability except in the case of very thin rings. The nonlinear mixing from type 2 instability perturbs the vortex into a variety of shapes. In the case of contracting rings of enhanced vorticity, the vortex and moat typically evolve into a nearly steady tripole structure, thereby offering a mechanism for the formation and persistence of elliptical eyewalls.

Full access
Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott

Editors note: For easy download the posted pdf of the Explaining Extreme Events of 2014 is a very low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.

Full access
Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott
Full access
Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott
Full access
Erin M. Dougherty, John Molinari, Robert F. Rogers, Jun A. Zhang, and James P. Kossin

Abstract

Hurricane Bonnie (1998) was an unusually resilient hurricane that maintained a steady-state intensity while experiencing strong (12–16 m s−1) vertical wind shear and an eyewall replacement cycle. This remarkable behavior was examined using observations from flight-level data, microwave imagery, radar, and dropsondes over the 2-day period encompassing these events. Similar to other observed eyewall replacement cycles, Bonnie exhibited the development, strengthening, and dominance of a secondary eyewall while a primary eyewall decayed. However, Bonnie’s structure was highly asymmetric because of the large vertical wind shear, in contrast to the more symmetric structures observed in other hurricanes undergoing eyewall replacement cycles. It is hypothesized that the unusual nature of Bonnie’s evolution arose as a result of an increase in vertical wind shear from 2 to 12 m s−1 even as the storm intensified to a major hurricane in the presence of high ambient sea surface temperatures. These circumstances allowed for the development of outer rainbands with intense convection downshear, where the formation of the outer eyewall commenced. In addition, the circulation broadened considerably during this time. The secondary eyewall developed within a well-defined beta skirt in the radial velocity profile, consistent with an earlier theory. Despite the large ambient vertical wind shear, the outer eyewall steadily extended upshear, supported by 35% larger surface wind speed upshear than downshear. The larger radius of maximum winds during and after the eyewall replacement cycle might have aided Bonnie’s resiliency directly, but also increased the likelihood that diabatic heating would fall inside the radius of maximum winds.

Full access
Carl J. Schreck III, Lei Shi, James P. Kossin, and John J. Bates

Abstract

The Madden–Julian oscillation (MJO) and convectively coupled equatorial waves are the dominant modes of synoptic-to-subseasonal variability in the tropics. These systems have frequently been examined with proxies for convection such as outgoing longwave radiation (OLR). However, upper-tropospheric water vapor (UTWV) gives a more complete picture of tropical circulations because it is more sensitive to the drying and warming associated with subsidence. Previous studies examined tropical variability using relatively short (3–7 yr) UTWV datasets. Intersatellite calibration of data from the High Resolution Infrared Radiation Sounder (HIRS) has recently produced a homogeneous 32-yr climate data record of UTWV for 200–500 hPa. This study explores the utility of HIRS UTWV for identifying the MJO and equatorial waves.

Spectral analysis shows that the MJO and equatorial waves stand out above the low-frequency background in UTWV, similar to previous findings with OLR. The fraction of variance associated with the MJO and equatorial Rossby waves is actually greater in UTWV than in OLR. Kelvin waves, on the other hand, are overshadowed in UTWV by horizontal advection from extratropical Rossby waves.

For the MJO, UTWV identifies subsidence drying in the subtropics, poleward of the convection. These dry anomalies are associated with the MJO’s subtropical Rossby gyres. MJO events with dry anomalies over the central North Pacific Ocean also amplify the 200-hPa flow pattern over North America 7 days later. These events cannot be identified using equatorial OLR alone, which demonstrates that UTWV is a useful supplement for identifying the MJO, equatorial waves.

Full access
Kenneth R. Knapp, Jessica L. Matthews, James P. Kossin, and Christopher C. Hennon

Abstract

The Cyclone Center project maintains a website that allows visitors to answer questions based on tropical cyclone satellite imagery. The goal is to provide a reanalysis of satellite-derived tropical cyclone characteristics from a homogeneous historical database composed of satellite imagery with a common spatial resolution for use in long-term, global analyses. The determination of the cyclone “type” (curved band, eye, shear, etc.) is a starting point for this process. This analysis shows how multiple classifications of a single image are combined to provide probabilities of a particular image’s type using an expectation–maximization (EM) algorithm. Analysis suggests that the project needs about 10 classifications of an image to adequately determine the storm type. The algorithm is capable of characterizing classifiers with varying levels of expertise, though the project needs about 200 classifications to quantify an individual’s precision. The EM classifications are compared with an objective algorithm, satellite fix data, and the classifications of a known classifier. The EM classifications compare well, with best agreement for eye and embedded center storm types and less agreement for shear and when convection is too weak (termed no-storm images). Both the EM algorithm and the known classifier showed similar tendencies when compared against an objective algorithm. The EM algorithm also fared well when compared to tropical cyclone fix datasets, having higher agreement with embedded centers and less agreement for eye images. The results were used to show the distribution of storm types versus wind speed during a storm’s lifetime.

Full access
Christopher M. Rozoff, Wayne H. Schubert, Brian D. McNoldy, and James P. Kossin

Abstract

Intense tropical cyclones often possess relatively little convection around their cores. In radar composites, this surrounding region is usually echo-free or contains light stratiform precipitation. While subsidence is typically quite pronounced in this region, it is not the only mechanism suppressing convection. Another possible mechanism leading to weak-echo moats is presented in this paper. The basic idea is that the strain-dominated flow surrounding an intense vortex core creates an unfavorable environment for sustained deep, moist convection. Strain-dominated regions of a tropical cyclone can be distinguished from rotation-dominated regions by the sign of S 2 1 + S 2 2ζ 2, where S 1 = uxυy and S 2 = υx + uy are the rates of strain and ζ = υxuy is the relative vorticity. Within the radius of maximum tangential wind, the flow tends to be rotation-dominated (ζ 2 > S 2 1 + S 2 2), so that coherent structures, such as mesovortices, can survive for long periods of time. Outside the radius of maximum tangential wind, the flow tends to be strain-dominated (S 2 1 + S 2 2 > ζ 2), resulting in filaments of anomalous vorticity. In the regions of strain-dominated flow the filamentation time is defined as τ fil = 2(S 2 1 + S 2 2ζ 2)−1/2. In a tropical cyclone, an approximately 30-km-wide annular region can exist just outside the radius of maximum tangential wind, where τ fil is less than 30 min and even as small as 5 min. This region is defined as the rapid filamentation zone. Since the time scale for deep moist convective overturning is approximately 30 min, deep convection can be significantly distorted and even suppressed in the rapid filamentation zone. A nondivergent barotropic model illustrates the effects of rapid filamentation zones in category 1–5 hurricanes and demonstrates the evolution of such zones during binary vortex interaction and mesovortex formation from a thin annular ring of enhanced vorticity.

Full access