Search Results

You are looking at 21 - 30 of 55 items for

  • Author or Editor: Jimy Dudhia x
  • All content x
Clear All Modify Search
Margaret A. LeMone, Mukul Tewari, Fei Chen, and Jimy Dudhia

Abstract

Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5% , where TKE′ is relative to its background (free atmosphere) value. The YSU- and MYJ-determined h could not be improved upon. Observed heights of the virtual temperature maximum h Tvmax and wind speed maximum h Smax, and the heights h 1wsonde and h 2wsonde, between which the radiosonde slows from ~5 to ~3 m s−1 as it rises from turbulent to nonturbulent air, and thus brackets h, were used for comparison to model results. The observations revealed a general pattern: h Tvmax increased through the night, and h Tvmax and h Smax converged with time, and the two mostly lay between h 1wsonde and h 2wsonde after several hours. Clear failure to adhere to this pattern and large excursions from observations or other PBL schemes revealed excess mixing for BouLac and YSU version 3.2 (but not version 3.4.1) and excess thermal mixing for QNSE under windy conditions. Observed friction velocity was much smaller than model values, with differences consistent with the observations reflecting local skin drag and the model reflecting regional form drag + skin drag.

Full access
Margaret A. LeMone, Mukul Tewari, Fei Chen, and Jimy Dudhia

Abstract

High-resolution 24-h runs of the Advanced Research version of the Weather Research and Forecasting Model are used to test eight objective methods for estimating convective boundary layer (CBL) depth h, using four planetary boundary layer schemes: Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), Bougeault–LaCarrere (BouLac), and quasi-normal scale elimination (QNSE). The methods use thresholds of virtual potential temperature Θυ, turbulence kinetic energy (TKE), Θυ,z, or Richardson number. Those that identify h consistent with values found subjectively from modeled Θυ profiles are used for comparisons to fair-weather observations from the 1997 Cooperative Atmosphere–Surface Exchange Study (CASES-97).

The best method defines h as the lowest level at which Θυ,z = 2 K km−1, working for all four schemes, with little sensitivity to horizontal grid spacing. For BouLac, MYJ, and QNSE, TKE thresholds did poorly for runs with 1- and 3-km grid spacing, producing irregular h growth not consistent with Θυ-profile evolution. This resulted from the vertical velocity W associated with resolved CBL eddies: for W > 0, TKE profiles were deeper and Θυ profiles more unstable than for W < 0. For the 1-km runs, 25-point spatial averaging was needed for reliable TKE-based h estimates, but thresholds greater than free-atmosphere values were sensitive to horizontal grid spacing. Matching Θυ(h) to Θυ(0.05h) or Θυ at the first model level were often successful, but the absence of eddies for 9-km grids led to more unstable Θυ profiles and often deeper h.

Values of h for BouLac, MYJ, and QNSE, are mostly smaller than observed, with YSU values close to slightly high, consistent with earlier results.

Full access
Hyeyum Hailey Shin, Song-You Hong, and Jimy Dudhia

Abstract

The lowest model level height z 1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z 1 is within the surface layer. In this study, impacts of z 1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF) model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor–Yamada–Janjić (MYJ) scheme.

Surface variables are sensitive to z 1 in daytime when z 1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z 1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z 1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.

Full access
Changhai Liu, Kyoko Ikeda, Gregory Thompson, Roy Rasmussen, and Jimy Dudhia

Abstract

An investigation was conducted on the effects of various physics parameterizations on wintertime precipitation predictions using a high-resolution regional climate model. The objective was to evaluate the sensitivity of cold-season mountainous snowfall to cloud microphysics schemes, planetary boundary layer (PBL) schemes, land surface schemes, and radiative transfer schemes at a 4-km grid spacing applicable to the next generation of regional climate models.

The results indicated that orographically enhanced precipitation was highly sensitive to cloud microphysics parameterizations. Of the tested 7 parameterizations, 2 schemes clearly outperformed the others that overpredicted the snowfall amount by as much as ~30%–60% on the basis of snow telemetry observations. Significant differences among these schemes were apparent in domain averages, spatial distributions of hydrometeors, latent heating profiles, and cloud fields. In comparison, model results showed relatively weak dependency on the land surface, PBL, and radiation schemes, roughly in the order of decreasing level of sensitivity.

Full access
C-H. Moeng, Jimy Dudhia, Joe Klemp, and Peter Sullivan

Abstract

The performance of two-way nesting for large eddy simulation (LES) of PBL turbulence is investigated using the Weather Research and Forecasting model framework. A pair of LES-within-LES experiments are performed where a finer-grid LES covering a smaller horizontal domain is nested inside a coarser-grid LES covering a larger horizontal domain. Both LESs are driven under the same environmental conditions, allowed to interact with each other, and expected to behave the same statistically. The first experiment of the free-convective PBL reveals a mean temperature bias between the two LES domains, which generates a nonzero mean vertical velocity in the nest domain while the mean vertical velocity averaged over the outer domain remains zero. The problem occurs when the horizontal extent of the nest domain is too small to capture an adequate sample of energy-containing eddies; this problem can be alleviated using a nest domain that is at least 5 times the PBL depth in both x and y. The second experiment of the neutral PBL exposes a bias in the prediction of the surface stress between the two LES domains, which is found due to the grid dependence of the Smagorinsky-type subgrid-scale (SGS) model. A new two-part SGS model is developed to solve this problem.

Full access
Ram P. Regmi, Toshihiro Kitada, Jimy Dudhia, and Sangeeta Maharjan

Abstract

Nepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.

Full access
Christopher Davis, Wei Wang, Jimy Dudhia, and Ryan Torn

Abstract

The representation of tropical cyclone track, intensity, and structure in a set of 69 parallel forecasts performed at each of two horizontal grid increments with the Advanced Research Hurricane (AHW) component of the Weather and Research and Forecasting Model (WRF) is evaluated. These forecasts covered 10 Atlantic tropical cyclones: 6 from the 2005 season and 4 from 2007. The forecasts were integrated from identical initial conditions produced by a cycling ensemble Kalman filter. The high-resolution forecasts used moving, storm-centered nests of 4- and 1.33-km grid spacing. The coarse-resolution forecasts consisted of a single 12-km domain (which was identical to the outer domain in the forecasts with nests). Forecasts were evaluated out to 120 h. Novel verification techniques were developed to evaluate forecasts of wind radii and the degree of storm asymmetry. Intensity (maximum wind) and rapid intensification, as well as wind radii, were all predicted more accurately with increased horizontal resolution. These results were deemed to be statistically significant based on the application of bootstrap confidence intervals. No statistically significant differences emerged regarding storm position errors between the two forecasts. Coarse-resolution forecasts tended to overpredict the extent of winds compared to high-resolution forecasts. The asymmetry of gale-force winds was better predicted in the coarser-resolution simulation, but asymmetry of hurricane-force winds was predicted better at high resolution. The skill of the wind radii forecasts decayed gradually over 120 h, suggesting a synoptic-scale control of the predictability of outer winds.

Full access
Hyeyum Hailey Shin, Song-You Hong, Yign Noh, and Jimy Dudhia

Abstract

Turbulent kinetic energy (TKE) is derived from a first-order planetary boundary layer (PBL) parameterization for convective boundary layers: the nonlocal K-profile Yonsei University (YSU) PBL. A parameterization for the TKE equation is developed to calculate TKE based on meteorological profiles given by the YSU PBL model. For this purpose buoyancy- and shear-generation terms are formulated consistently with the YSU scheme—that is, the combination of local, nonlocal, and explicit entrainment fluxes. The vertical transport term is also formulated in a similar fashion. A length scale consistent with the K profile is suggested for parameterization of dissipation.

Single-column model (SCM) simulations are conducted for a period in the second Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS2) intercomparison case. Results from the SCM simulations are compared with large-eddy simulation (LES) results. The daytime evolution of the vertical structure of TKE matches well with mixed-layer development. The TKE profile is shaped like a typical vertical velocity (w) variance, and its maximum is comparable to that from the LES. By varying the dissipation length from −23% to +13% the TKE maximum is changed from about −15% to +7%. After normalization, the change does not exceed the variability among previous studies. The location of TKE maximum is too low without the effects of the nonlocal TKE transport.

Full access
Barry H. Lynn, Alexander P. Khain, Jimy Dudhia, Daniel Rosenfeld, Andrei Pokrovsky, and Axel Seifert

Abstract

Spectral (bin) microphysics (SBM) has been implemented into the three-dimensional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The new model was used to simulate a squall line that developed over Florida on 27 July 1991. It is shown that SBM reproduces precipitation rate, rain amounts, and location, radar reflectivity, and cloud structure much better than bulk parameterizations currently implemented in MM5.

Sensitivity tests show the importance of (i) raindrop breakup, (ii) in-cloud turbulence, (iii) different aerosol concentrations, and (iv) inclusion of scavenging of aerosols. Breakup decreases average and maximum rainfall. In-cloud turbulence enhances particle drop collision rates and increases rain rates. A “continental” aerosol concentration produces a much larger maximum rainfall rate versus that obtained with “maritime” aerosol concentration. At the same time accumulated rain is larger with maritime aerosol concentration. The scavenging of aerosols by nucleating water droplets strongly affected the concentration of aerosols in the atmosphere.

The spectral (bin) microphysics mesoscale model can potentially be used for studies of specific phenomena such as severe storms, winter storms, tropical cyclones, etc. The more realistic reproduction of cloud structure than that obtained with bulk parameterization implies that the model will be more useful for remote sensing applications and in the development of advanced rain retrieval algorithms. The model can also simulate the effect of cloud seeding on rain production.

Full access
Raquel Lorente-Plazas, Pedro A. Jiménez, Jimy Dudhia, and Juan P. Montávez

Abstract

This study assesses the impact of the atmospheric stability on the turbulent orographic form drag (TOFD) generated by unresolved small-scale orography (SSO) focusing on surface winds. With this aim, several experiments are conducted with the Weather Research and Forecasting (WRF) Model and they are evaluated over a large number of stations (318 at 2-m height) in the Iberian Peninsula with a year of data. In WRF, Jiménez and Dudhia resolved the SSO by including a factor in the momentum equation, which is a function of the orographic variability inside a grid cell. It is found that this scheme can improve the simulated surface winds, especially at night, but it can underestimate the winds during daytime. This suggests that TOFD can be dependent on the PBL’s stability. To inspect and overcome this limitation, the stability conditions are included in the SSO parameterization to maintain the intensity of the drag during stable conditions while attenuating it during unstable conditions. The numerical experiments demonstrate that the inclusion of stability effects on the SSO drag parameterization improves the simulated surface winds at diurnal, monthly, and annual scales by reducing the systematic daytime underestimation of the original scheme. The correction is especially beneficial when both the convective velocity and the boundary layer height are used to characterize the unstable conditions.

Full access