Search Results

You are looking at 21 - 28 of 28 items for

  • Author or Editor: K. N. Liou x
  • All content x
Clear All Modify Search
Steven K. Krueger, Qiang Fu, K. N. Liou, and Hung-Neng S. Chin

Abstract

It is important to properly simulate the extent and ice water content of tropical anvil clouds in numerical models that explicitly include cloud formation because of the significant effects that these clouds have on the radiation budget. For this reason, a commonly used bulk ice-phase microphysics parameterization was modified to more realistically simulate some of the microphysical processes that occur in tropical anvil clouds. Cloud ice growth by the Bergeron process and the associated formation of snow were revised. The characteristics of graupel were also modified in accord with a previous study. Numerical simulations of a tropical squall line demonstrate that the amount of cloud ice and the extent of anvil clouds are increased to more realistic values by the first two changes.

Full access
S. C. Ou, K. N. Liou, Y. Takano, and R. L. Slonaker

Abstract

This paper presents a conceptual approach toward the remote sensing of cirrus cloud particle size and optical depth using the degree of polarization and polarized reflectance associated with the first three Stokes parameters, I, Q, and U, for the 0.865- and 2.25-μm wavelengths. A vector line-by-line equivalent radiative transfer program including the full Stokes parameters based on the adding method was developed. The retrieval algorithm employs the steepest-descent method in the form of a series of numerical iteration procedures to search for the simulated polarization parameters that best match the measured values. Sensitivity studies were performed to investigate the behavior of phase-matrix elements as functions of scattering angles for three ice crystal size–shape combinations. Overall, each phase-matrix element shows some sensitivity toward ice crystal shape, size, and surface roughness due to the various optical effects. Synthetic analysis reveals that the retrieval algorithm is highly accurate, while polarimetric and radiometric error sources cause very small retrieval errors. Finally, an illustrative example of applying the retrieval algorithm to airborne Polarization and Directionality of the Earth’s Reflectances (POLDER) data during the European Cloud and Radiation Experiment (EUCREX) is presented.

Full access
Brian Barkey, K. N. Liou, Yoshihide Takano, Werner Gellerman, and Pierre Sokolsky

Abstract

The scattering properties of hexagonal icelike crystals as measured in the analog manner by the experimental apparatus described in Part I are presented. The crystals are made out of sodium fluoride (NaF), which has an index of refraction similar to that of water ice. The experimentally determined light intensities scattered from fixed and integrated random orientations of a NaF hexagonal crystal, oriented to produce a two-dimensional scattering profile, compares favorably to the expectations derived from geometric ray tracing methods. Also, the three-dimensional scattering properties of a simulated NaF Parry column, a NaF crystal aggregate, and a NaF plate with a rough surface are compared to results computed from the geometric ray tracing approach. From these comparisons the authors conclude that within the experimental measurement uncertainties and to the degree in which the NaF crystal models approach the geometric and optical ideal, the geometric ray tracing approach is an excellent method to determine the single-scattering properties of hexagonal ice crystals of various shapes in the geometric optics domain.

Full access
Qing Yue, K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. G. Mace

Abstract

A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for the speedy calculation of transmittances in clear atmospheres, and a thin cirrus cloud parameterization using a number of observed ice crystal size and shape distributions. Numerical simulations show that cirrus cloudy radiances in the 800–1130-cm−1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth and ice crystal size as well as in ice crystal shape if appropriate habit distribution models are selected a priori for analysis. The parameterization model has been applied to the Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite to interpret clear and thin cirrus spectra observed in the thermal infrared window. Five clear and 29 thin cirrus cases at nighttime over and near the Atmospheric Radiation Measurement program (ARM) tropical western Pacific (TWP) Manus Island and Nauru Island sites have been chosen for this study. A χ2-minimization program was employed to infer the cirrus optical depth and ice crystal size and shape from the observed AIRS spectra. Independent validation shows that the AIRS-inferred cloud parameters are consistent with those determined from collocated ground-based millimeter-wave cloud radar measurements. The coupled thin cirrus radiative transfer parameterization and OPTRAN, if combined with a reliable thin cirrus detection scheme, can be effectively used to enhance the AIRS data volume for data assimilation in numerical weather prediction models.

Full access
K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, and T. P. Ackerman

Abstract

A dual-channel retrieval technique involving the water vapor band at 6.5 μm and the window region at 10.5 gm has been developed to infer the temperature and emissivity of tropical anvils. This technique has been applied to data obtained from the ER-2 narrow field-of-view radiometers during two flights in the field observation of the Stratosphere-Troposphere Exchange Project (STEP) near Damn, Australia, January-February 1987. The retrieved cloud temperatures are between 190 and 240 K, while the cloud emissivities derived from the retrieval algorithm range from about 0.2 to 1. Moreover, the visible optical depths have been obtained from the cloud emissivity through a theoretical parameterization with values of 0.5-10. A significant portion of tropical cirrus clouds are found to have optical depths greater than about 6. Because of the parameterization, the present technique is unable to precisely determine the optical depth values for optically thick cirrus clouds.

Full access
Qiang Fu, K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman

Abstract

A systematic formulation of various radiative transfer parameterizations is presented, including the absorption approximation (AA), δ-two-stream approximation (D2S), δ-four-stream approximation (D4S), and δ-two- and four-stream combination approximation (D2/4S), in a consistent manner for thermal infrared flux calculations. The D2/4S scheme uses a source function from the δ-two-stream approximation and evaluates intensities in the four-stream directions. A wide range of accuracy checks for monochromatic emissivity of a homogeneous layer and broadband heating rates and fluxes in nonhomogeneous atmospheres is performed with respect to the “exact” results computed from the δ-128-stream scheme for radiative transfer. The computer time required for the calculations using different radiative transfer parameterizations is compared. The results pertaining to the accuracy and efficiency of various radiative transfer approximations can be utilized to decide which approximate method is most appropriate for a particular application. In view of its overall high accuracy and computational economy, it is recommended that the D2/4S scheme is well suited for GCM and climate modeling applications.

Full access
S.C. Ou, K.N. Liou, Y. Takano, N.X. Rao, Q. Fu, A.J. Heymsfield, L.M. Miloshevich, B. Baum, and S.A. Kinne

Abstract

Using the data obtained from the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm and 10.9-µm channels, a retrieval scheme has been developed to simultaneously infer cirrus cloud optical depth and mean effective ice crystal size based on the theory of radiative transfer and parameterizations. A numerical scheme is further developed to remove the solar component in the 3.7-µm radiance for applications to daytime satellite data. This scheme is based on the correlation between the 3.7-µm (solar) and 0.63-µm reflectances. Validation of the algorithm has been performed by using various datasets that were collected during the FIRE-II IFO (Nov-Dec 1991) at Coffeyville, Kansas. We have focused on the 26 November and 5 December cases. The retrieval analysis over a 0.5°×1.0° area is performed around Coffeyville for each case based on AVHRR-HRPT data. For validation the authors analyze the photomicrograph data collected by the balloonborne replicator, determine the microphysical and optical properties of the sampled cirrus clouds, and derive their position at the satellite overpass based on sounding data. It is demonstrated that the retrieved cirrus cloud temperature, mean effective ice crystal size, and optical depth closely match the observed values. Further, the retrieved cirrus cloud properties are applied to the computation of surface radiative fluxes using a radiative transfer program that involves a consistent representation of cirrus cloud fields. The computed values are compared with the data measured from ground-based radiometers, and it is shown that the computed downward surface IR and solar fluxes are within 5 and 10 W m−2 of the measured values, respectively, near the time of satellite overpass.

Full access
R. A. Hansell, S. C. Tsay, Q. Ji, N. C. Hsu, M. J. Jeong, S. H. Wang, J. S. Reid, K. N. Liou, and S. C. Ou

Abstract

In September 2006, NASA Goddard’s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73°N, 22.93°W) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadowband radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu–Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRELW) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRELW and longwave heating rate profiles are also evaluated. Instantaneous surface DRELW ranges from 2 to 10 W m−2 and exhibits a strong linear dependence with dust AOT yielding a DRELW of 16 W m−2 per unit dust AOT. The DRELW is estimated to be ∼42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRELW can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

Full access