Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: R. Meyer x
  • All content x
Clear All Modify Search
Christopher D. Karstens, James Correia Jr., Daphne S. LaDue, Jonathan Wolfe, Tiffany C. Meyer, David R. Harrison, John L. Cintineo, Kristin M. Calhoun, Travis M. Smith, Alan E. Gerard, and Lans P. Rothfusz

Abstract

Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind) fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their potential threat in real time. The National Weather Service (NWS) provides advance warning for severe convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environmental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) with NWS forecasters and partners has yielded insights into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of information through the development of a human–machine mix. Forecasters conditionally used automated object-based guidance within four levels of automation to issue deterministic products containing PHI. Forecasters accomplished this task in a timely manner while focusing on communication and conveying forecast confidence, elements considered necessary by emergency managers. Observed annual increases in the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the prototyped software, guidance, and techniques. However, increasing usage of automation requires improvements in guidance, data integration, and data visualization to garner trust more effectively. Additional opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of subjective probability.

Full access
A. K. Pavlov, A. Meyer, A. Rösel, L. Cohen, J. King, P. Itkin, J. Negrel, S. Gerland, S. R. Hudson, P. A. Dodd, L. de Steur, S. Mathisen, N. Cobbing, and M. A. Granskog

Abstract

Effective science communication is essential to share knowledge and recruit the next generation of researchers. Science communication to the general public can, however, be hampered by limited resources and a lack of incentives in the academic environment. Various social media platforms have recently emerged, providing free and simple science communication tools to reach the public and young people especially, an audience often missed by more conventional outreach initiatives. While individual researchers and large institutions are present on social media, smaller research groups are underrepresented. As a small group of oceanographers, sea ice scientists, and atmospheric scientists at the Norwegian Polar Institute, we share our experience establishing, developing, and maintaining a successful Arctic science communication initiative (@oceanseaicenpi) on Instagram, Twitter, and Facebook. The initiative is run entirely by a team of researchers with limited time and financial resources. It has built a broad audience of more than 7,000 followers, half of which is associated with the team’s Instagram account. To our knowledge, @oceanseaicenpi is one of the most successful Earth sciences Instagram accounts managed by researchers. The initiative has boosted the alternative metric scores of our publications and helped participating researchers become better writers and communicators. We hope to inspire and help other research groups by providing some guidelines on how to develop and conduct effective science communication via social media.

Open access
R. H. Moss, S. Avery, K. Baja, M. Burkett, A. M. Chischilly, J. Dell, P. A. Fleming, K. Geil, K. Jacobs, A. Jones, K. Knowlton, J. Koh, M. C. Lemos, J. Melillo, R. Pandya, T. C. Richmond, L. Scarlett, J. Snyder, M. Stults, A. M. Waple, J. Whitehead, D. Zarrilli, B. M. Ayyub, J. Fox, A. Ganguly, L. Joppa, S. Julius, P. Kirshen, R. Kreutter, A. McGovern, R. Meyer, J. Neumann, W. Solecki, J. Smith, P. Tissot, G. Yohe, and R. Zimmerman

Abstract

As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.

Open access
R. H. Moss, S. Avery, K. Baja, M. Burkett, A. M. Chischilly, J. Dell, P. A. Fleming, K. Geil, K. Jacobs, A. Jones, K. Knowlton, J. Koh, M. C. Lemos, J. Melillo, R. Pandya, T. C. Richmond, L. Scarlett, J. Snyder, M. Stults, A. Waple, J. Whitehead, D. Zarrilli, J. Fox, A. Ganguly, L. Joppa, S. Julius, P. Kirshen, R. Kreutter, A. McGovern, R. Meyer, J. Neumann, W. Solecki, J. Smith, P. Tissot, G. Yohe, and R. Zimmerman
Open access
J. C. Doran, F. J. Barnes, R. L. Coulter, T. L. Crawford, D. D. Baldocchi, L. Balick, D. R. Cook, D. Cooper, R. J. Dobosy, W. A. Dugas, L. Fritschen, R. L. Hart, L. Hipps, J. M. Hubbe, W. Gao, R. Hicks, R. R. Kirkham, K. E. Kunkel, T. J. Martin, T. P. Meyers, W. Porch, J. D. Shannon, W. J. Shaw, E. Swiatek, and C. D. Whiteman

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Full access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access
Dennis Baldocchi, Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch. Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw U, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access