Search Results

You are looking at 21 - 30 of 63 items for

  • Author or Editor: Steven B. Feldstein x
  • All content x
Clear All Modify Search
Christian Franzke and Steven B. Feldstein

Abstract

This study presents an alternative interpretation for Northern Hemisphere teleconnection patterns. Rather than comprising several different recurrent regimes, this study suggests that there is a continuum of teleconnection patterns. This interpretation indicates either that 1) all members of the continuum can be expressed in terms of a linear combination of a small number of real physical modes that correspond to basis functions or 2) that most low-frequency patterns within the continuum are real physical patterns, each having its own spatial structure and frequency of occurrence.

Daily NCEP–NCAR reanalysis data are used that cover the boreal winters of 1958–97. A set of nonorthogonal basis functions that span the continuum is derived. The leading basis functions correspond to well-known patterns such as the Pacific–North American teleconnection and North Atlantic Oscillation. Evidence for the continuum perspective is based on the finding that 1) most members of the continuum tend to have similar variance and autocorrelation time scales and 2) that members of the continuum show dynamical characteristics that are intermediate between those of the surrounding basis functions. The latter finding is obtained by examining the streamfunction tendency equation both for the basis functions and some members of the continuum.

The streamfunction tendency equation analysis suggests that North Pacific patterns (basis functions and continuum) are primarily driven by their interaction with the climatological stationary eddies and that North Atlantic patterns are primarily driven by transient eddy vorticity fluxes. The decay mechanism for all patterns is similar, being due to the impact of low-frequency (period greater than 10 days) transient eddies and horizontal divergence. Analysis with outgoing longwave radiation shows that tropical convection is found to play a much greater role in exciting North Pacific patterns. A plausible explanation for these differences between the North Atlantic and North Pacific patterns is presented.

Full access
Michael Goss and Steven B. Feldstein

Abstract

The dynamical core of a dry global model is used to investigate the role of central Pacific versus warm pool tropical convection on the extratropical response over the North Pacific and North America. A series of model runs is performed in which the amplitude of the warm pool (WP) and central Pacific (CP) heating anomalies associated with the MJO and El Niño–Southern Oscillation (ENSO) is systematically varied. In addition, model calculations based on each of the eight MJO phases are performed, first using stationary heating, and then with heating corresponding to a 48-day MJO cycle and to a 32-day MJO cycle.

In all model runs, the extratropical response to tropical convection occurs within 7–10 days of the convective heating. The response is very sensitive to the relative amplitude of the heating anomalies. For example, when heating anomalies in the WP and CP have similar amplitude but opposite sign, the amplitude of the extratropical response is much weaker than is typical for the MJO and ENSO. For the MJO, when the WP heating anomaly is much stronger than the CP heating anomaly (vice versa for ENSO), the extratropical response is amplified. For the MJO heating, it is found that the extratropical responses to phases 4 and 8 are most distinct. A likely factor contributing to this distinctiveness involves the relative amplitude of the two heating anomalies. The stationary and moving (48- and 32-day) heating responses are very similar, revealing a lack of sensitivity to the MJO phase speed.

Full access
Changhyun Yoo, Sukyoung Lee, and Steven B. Feldstein

Abstract

Using an initial-value approach with an idealized general circulation model, the mechanisms by which the Madden–Julian oscillation (MJO) influences the Arctic surface air temperature (SAT) are investigated. Model calculations corresponding to MJO phases 1 and 5 are performed, as previous studies have shown that these two phases are associated with a cooling and warming of the Arctic surface, respectively. Observed MJO-like tropical heating profiles are specified, with the phase 5 (phase 1) heating taking on a more zonally localized (uniform) spatial structure. A large ensemble of model runs is performed, where the initial flow of each ensemble member consists of the winter climatology together with an initial perturbation that is selected randomly from observational data. The model calculations show that MJO phase 5 (phase 1) is followed by a strengthening (weakening) in the poleward wave activity propagation out of the tropics, which leads to an increase (decrease) in Arctic SAT. Examination of the corresponding eddy momentum flux convergence and mass streamfunction fields shows that an eddy-induced mean meridional circulation warms (cools) the Arctic for phase 5 (phase 1). Further Arctic warming (cooling) takes place through changes in the planetary-scale, poleward eddy heat flux. In addition, calculations with a passive tracer added to the model show an increase (decrease) in the high-latitude tracer concentration for MJO phase 5 (phase 1). These results suggest that the observed changes in Arctic downward infrared radiation associated with the MJO may be associated with changes in poleward moisture transport.

Full access
Dehai Luo, Yina Diao, and Steven B. Feldstein

Abstract

The winter-mean North Atlantic Oscillation (NAO) index has been mostly positive since the 1980s, with a linear upward trend during the period from 1978 to 1990 (P1) and a linear downward trend during the period from 1991 to 2009 (P2). Further calculations show that the Atlantic storm-track eddy activity is more intense during P2 than during P1, which is statistically significant at the 90% confidence level for a t test. This study proposes a hypothesis that the change in the trend of the positive NAO index from P1 to P2 may be associated with the marked intensification of the Atlantic storm track during P2.

A generalized nonlinear NAO model is used to explain the observed trend of the positive NAO index within P2. It is found that even when the Atlantic storm-track eddies are less intense, a positive-phase NAO event can form under the eddy forcing if the planetary-scale wave has an initial value with a low-over-high dipole structure during P1 and P2. A blocking flow can occur in the downstream side (over Europe) of the Atlantic basin as a result of the energy dispersion of Rossby waves during the decay of the positive-phase NAO event. This blocking flow does not strictly correspond to a negative-phase NAO event because the blocking stays mainly over the European continent. However, when the Atlantic storm-track eddies are rather strong, the blocking flow occurring over the European continent is enhanced and can retrograde into the Atlantic region and finally become a long-lived negative-phase NAO event. In this case, the NAO event can transit from the positive phase to the negative phase. Thus, the winter-mean NAO index during P2 will inevitably decline because of the increase in days of negative-phase NAO events in winter because the Atlantic storm track exhibits a marked intensification in the time interval. The transition of the NAO event from the positive phase to the negative phase can also be observed only when the downstream development of the Atlantic storm-track eddy activity is rather prominent.

Thus, it appears that there is a physical link between intraseasonal and interannual time scales of the NAO when the Atlantic storm track exhibits an interannual variability.

Full access
Dehai Luo, Jing Cha, and Steven B. Feldstein

Abstract

In this study, the relationship between weather regime transitions and the interannual variability of the North Atlantic Oscillation (NAO) in winter during 1978–2008 is examined by using a statistical approach. Four classical weather regimes—the two phases of the NAO (NAO+, NAO) and the Scandinavian blocking and Atlantic ridge patterns—are obtained with k-means cluster analysis. Observations show that the transition between the NAO+ and NAO regimes is markedly different between 1978–90 (P1) and 1991–2008 (P2). Within P1 (P2), the frequency of the NAO to NAO+ (NAO+ to NAO) transition events is almost twice that of the NAO+ to NAO (NAO to NAO+) transition events. On this basis, further cluster analysis performed for two cases with and without NAO transition events indicates that within P1 (P2) the NAO+ (NAO) anomaly is markedly enhanced as the NAO to NAO+ (NAO+ to NAO) transitions take place. Furthermore, the NAO regime transition is found to be more likely to enhance the eastward shift of the NAO+ (NAO) anomaly. Thus, it is hypothesized that the interannual change in the winter-mean NAO index from P1 to P2 is related to the intraseasonal NAO to NAO+ (NAO+ to NAO) transition events during P1 (P2) because of the variation of the NAO pattern in intensity, location, and frequency (number of days). This finding is also seen from calculations of the winter monthly mean NAO index with and without NAO regime transitions.

Full access
Tingting Gong, Steven B. Feldstein, and Sukyoung Lee

Abstract

The relationship between latent heating over the Greenland, Barents, and Kara Seas (GBKS hereafter) and Rossby wave propagation between the Arctic and midlatitudes is investigated using global reanalysis data. Latent heating is the focus because it is the most likely source of Rossby wave activity over the Arctic Ocean. Given that the Rossby wave time scale is on the order of several days, the analysis is carried out using a daily latent heating index that resembles the interdecadal latent heating trend during the winter season. The results from regression calculations find a trans-Arctic Rossby wave train that propagates from the subtropics, through the midlatitudes, into the Arctic, and then back into midlatitudes over a period of about 10 days. Upon entering the GBKS, this wave train transports moisture into the region, resulting in anomalous latent heat release. At high latitudes, the overlapping of a negative latent heating anomaly with an anomalous high is consistent with anomalous latent heat release fueling the Rossby wave train before it propagates back into the midlatitudes. This implies that the Rossby wave propagation from the Arctic into the midlatitudes arises from trans-Arctic wave propagation rather than from in situ generation. The method used indicates the variance of the trans-Arctic wave train, but not in situ generation, and implies that the variance of the former is greater than that of latter. Furthermore, GBKS sea ice concentration regression against the latent heating index shows the largest negative value six days afterward, indicating that sea ice loss contributes little to the latent heating.

Open access
Tingting Gong, Steven B. Feldstein, and Dehai Luo

Abstract

This study investigates the relationship between El Niño–Southern Oscillation (ENSO) and southern annular mode (SAM) events with an idealized general circulation model. A series of model calculations are performed to examine why positive (negative) intraseasonal SAM events are observed to occur much more frequently during La Niña (El Niño). Seven different model runs are performed: a control run, three El Niño runs (the first with a zonally symmetric heating field, the second with a zonally asymmetric heating/cooling field, and the third that combines both fields), and three La Niña runs (with heating fields of opposite sign).

The model runs with the zonally symmetric and combined heating fields are found to yield the same relationship between the phase of ENSO and the preferred phase for SAM events as is observed in the atmosphere. In contrast, the zonally asymmetric model runs are found to have the opposite SAM–ENSO phase preference characteristics. Since a reduced midlatitude meridional potential vorticity gradient has been linked to a greater frequency of positive-phase SAM events, and vice versa for negative SAM events, the meridional potential vorticity gradient in the various model runs was compared. The results suggest that the phase preference of SAM events during ENSO arises from the impact of the zonal-mean heating on the midlatitude meridional potential vorticity gradient.

Full access
Dehai Luo, Jing Cha, and Steven B. Feldstein

Abstract

In this study, attention is focused on identifying the dynamical processes that contribute to the negative North Atlantic Oscillation (NAO) to positive NAO (NAO+) and NAO+ to NAO transitions that occur during 1978–90 (P1) and 1991–2008 (P2). By constructing Atlantic ridge (AR) and Scandinavian blocking (SBL) indices, the composite analysis demonstrates that in a stronger AR (SBL) winter NAO (NAO+) event can more easily transition into an NAO+ (NAO) event. Composites of 300-hPa geopotential height anomalies for the NAO to NAO+ and NAO+ to NAO transition events during P1 and P2 are calculated. It is shown for P2 (P1) that the NAO+ to SBL to NAO (NAO to AR to NAO+) transition results from the retrograde drift of an enhanced high-latitude, large-scale, positive (negative) anomaly over northern Europe during the decay of the previous NAO+ (NAO) event. This finding cannot be detected for NAO events without transition.

Moreover, it is found that the amplification of retrograding wavenumber 1 is more important for the NAO to NAO+ transition during P1, but the marked reintensification and retrograde movement of both wavenumbers 1 and 2 after the NAO+ event decays is crucial for the NAO+ to NAO transition during P2. It is further shown that destructive (constructive) interference between wavenumbers 1 and 2 over the North Atlantic during P1 (P2) is responsible for the subsequent weak NAO+ (strong NAO) anomaly associated with the NAO to NAO+ (NAO+ to NAO) transition. Also, the weakening (strengthening) of the vertically integrated zonal wind (upstream Atlantic storm track) is found to play an important role in the NAO regime transition.

Full access
Joseph P. Clark and Steven B. Feldstein

Abstract

Radiative transfer calculations are conducted to determine the contribution of temperature and water vapor anomalies toward the surface clear-sky downward longwave radiation (DLR) anomalies of the NAO. These calculations are motivated by the finding that the NAO’s skin temperature anomalies are driven primarily by changes in surface DLR. The clear-sky radiative transfer calculations follow the result that the clear-sky surface DLR anomalies can account for most of the all-sky surface DLR anomalies of the NAO. The results of the radiative transfer calculations prompt an analysis of the thermodynamic energy and total column water (TCW) budget equations, as water vapor and temperature anomalies are found to be equally important drivers of the surface DLR anomalies of the NAO. Composite analysis of the thermodynamic energy equation reveals that the temperature anomalies of the NAO are wind driven: the advection of climatological temperature by the anomalous wind drives the NAO’s temperature anomalies at all levels except for those in the upper troposphere–lower stratosphere where the advection of anomalous temperature by the climatological wind becomes dominant. A similar analysis of the TCW budget reveals that changes in TCW are driven by water flux convergence. In addition to determining the drivers of the temperature and TCW anomalies, the thermodynamic energy and water budget analyses reveal that the decay of the temperature anomalies occurs primarily through vertical mixing, and that of the water anomalies mostly by evaporation minus precipitation.

Free access
Joseph P. Clark and Steven B. Feldstein

Abstract

Composite analysis is used to examine the physical processes that drive the growth and decay of the surface air temperature anomaly pattern associated with the North Atlantic Oscillation (NAO). Using the thermodynamic energy equation that the European Centre for Medium-Range Weather Forecasts implements in their reanalysis model, we show that advection of the climatological temperature field by the anomalous wind drives the surface air temperature anomaly pattern for both NAO phases. Diabatic processes exist in strong opposition to this temperature advection and eventually cause the surface air temperature anomalies to return to their climatological values. Specifically, over Greenland, Europe, and the United States, longwave heating/cooling opposes horizontal temperature advection while over northern Africa vertical mixing opposes horizontal temperature advection. Despite the pronounced spatial correspondence between the skin temperature and surface air temperature anomaly patterns, the physical processes that drive these two temperature anomalies associated with the NAO are found to be distinct. The skin temperature anomaly pattern is driven by downward longwave radiation whereas stated above, the surface air temperature anomaly pattern is driven by horizontal temperature advection. This implies that the surface energy budget, although a useful diagnostic tool for understanding skin temperature changes, should not be used to understand surface air temperature changes.

Free access