Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: Sujay Kumar x
  • All content x
Clear All Modify Search
Peyman Abbaszadeh, Hamid Moradkhani, Keyhan Gavahi, Sujay Kumar, Christopher Hain, Xiwu Zhan, Qingyun Duan, Christa Peters-Lidard, and Mohammadsepehr Karimiziarani
Full access
Xiping Zeng, Wei-Kuo Tao, Minghua Zhang, Christa Peters-Lidard, Stephen Lang, Joanne Simpson, Sujay Kumar, Shaocheng Xie, Joseph L. Eastman, Chung-Lin Shie, and James V. Geiger

Abstract

Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and are compared to Atmospheric Radiation Measurement Program (ARM) data. Surface fluxes from ARM ground stations and a land data assimilation system are used to drive the CRM. This modeling evaluation shows that the model simulates precipitation well but overpredicts clouds, especially in the upper troposphere. The evaluation also shows that the ARM surface fluxes can have noticeable errors in summertime.

Theoretical analysis reveals that buoyancy damping is sensitive to spatial smoothers in two-dimensional (2D) CRMs, but not in 3D ones. With this theoretical analysis and the ARM cloud observations as background, 2D and 3D simulations are compared, showing that the 2D CRM has not only rapid fluctuations in surface precipitation but also spurious dehumidification (or a decrease in cloud amount). The present study suggests that the rapid precipitation fluctuation and spurious dehumidification be attributed to the sensitivity of buoyancy damping to dimensionality.

Full access
Youlong Xia, David M. Mocko, Shugong Wang, Ming Pan, Sujay V. Kumar, Christa D. Peters-Lidard, Helin Wei, Dagang Wang, and Michael B. Ek

Abstract

Since the second phase of the North American Land Data Assimilation System (NLDAS-2) was operationally implemented at NOAA/NCEP as part of the production suite in August 2014, developing the next phase of NLDAS has been a key focus of the NCEP and NASA NLDAS teams. The Variable Infiltration Capacity (VIC) model is one of the four land surface models of the NLDAS system. The current operational NLDAS-2 uses version 4.0.3 (VIC403), the research NLDAS-2 used version 4.0.5 (VIC405), and the NASA Land Information System (LIS)-based NLDAS uses version 4.1.2.l (VIC412). The purpose of this study is to evaluate VIC403 and VIC412 and check if the latter version has better performance for the next phase of NLDAS. Toward this, a comprehensive evaluation was conducted, targeting multiple variables and using multiple metrics to assess the performance of different model versions. The evaluation results show large and significant improvements in VIC412 over the southeastern United States when compared with VIC403 and VIC405. In other regions, there are very limited improvements or even deterioration to some degree. This is partially due to 1) the sparseness of USGS streamflow observations for model parameter calibration and 2) a deterioration of VIC model performance in the Great Plains (GP) region after a model upgrade to a newer version. Overall, the model upgrade enhances model performance and skill scores for most parts of the continental United States; exceptions include the GP and western mountainous regions, as well as the daily soil moisture simulation skill, suggesting that VIC model development is on the right path. Further efforts are needed for scientific understanding of land surface physical processes in the GP, and a recalibration of VIC412 using reasonable reference datasets is recommended.

Full access
Sujay V. Kumar, Michael Jasinski, David M. Mocko, Matthew Rodell, Jordan Borak, Bailing Li, Hiroko Kato Beaudoing, and Christa D. Peters-Lidard

Abstract

This article describes one of the first successful examples of multisensor, multivariate land data assimilation, encompassing a large suite of soil moisture, snow depth, snow cover, and irrigation intensity environmental data records (EDRs) from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), Advanced Scatterometer (ASCAT), Moderate-Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), Soil Moisture Ocean Salinity (SMOS) mission, and Soil Moisture Active Passive (SMAP) mission. The analysis is performed using the NASA Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The performance of the NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing it to a number of hydrological reference data products. Results indicate that multivariate assimilation provides systematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of simulated streamflow and evapotranspiration. An important conclusion is that across all evaluated variables, assimilation of data from increasingly more modern sensors (e.g., SMOS, SMAP, AMSR2, ASCAT) produces more skillful results than assimilation of data from older sensors (e.g., SMMR, SSM/I, AMSR-E). The evaluation also indicates the high skill of NCA-LDAS when compared with other LSM products. Further, drought indicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of the western United States during 1979–2015, particularly in the southwestern United States, consistent with the trends from the U.S. Drought Monitor, albeit for a shorter 2000–15 time period.

Full access
Sujay V. Kumar, Christa D. Peters-Lidard, David Mocko, Rolf Reichle, Yuqiong Liu, Kristi R. Arsenault, Youlong Xia, Michael Ek, George Riggs, Ben Livneh, and Michael Cosh

Abstract

The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979–2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translate into subsequent small improvements in simulated streamflow. The assimilation of snow depth datasets were found to generally improve the snow fields, but these improvements did not always translate to corresponding improvements in streamflow, including some notable degradations observed in the western United States. A quantitative examination of the percentage drought area from root-zone soil moisture and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil moisture assimilation provides improvements at short time scales, both in the magnitude and representation of the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often disadvantageous.

Full access
Sujay V. Kumar, Benjamin F. Zaitchik, Christa D. Peters-Lidard, Matthew Rodell, Rolf Reichle, Bailing Li, Michael Jasinski, David Mocko, Augusto Getirana, Gabrielle De Lannoy, Michael H. Cosh, Christopher R. Hain, Martha Anderson, Kristi R. Arsenault, Youlong Xia, and Michael Ek

Abstract

The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin-averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

Full access
Peter J. Shellito, Sujay V. Kumar, Joseph A. Santanello Jr., Patricia Lawston-Parker, John D. Bolten, Michael H. Cosh, David D. Bosch, Chandra D. Holifield Collins, Stan Livingston, John Prueger, Mark Seyfried, and Patrick J. Starks

Abstract

The utility of hydrologic land surface models (LSMs) can be enhanced by using information from observational platforms, but mismatches between the two are common. This study assesses the degree to which model agreement with observations is affected by two mechanisms in particular: 1) physical incongruities between the support volumes being characterized and 2) inadequate or inconsistent parameterizations of physical processes. The Noah and Noah-MP LSMs by default characterize surface soil moisture (SSM) in the top 10 cm of the soil column. This depth is notably different from the 5-cm (or less) sensing depth of L-band radiometers such as NASA’s Soil Moisture Active Passive (SMAP) satellite mission. These depth inconsistencies are examined by using thinner model layers in the Noah and Noah-MP LSMs and comparing resultant simulations to in situ and SMAP soil moisture. In addition, a forward radiative transfer model (RTM) is used to facilitate direct comparisons of LSM-based and SMAP-based L-band Tb retrievals. Agreement between models and observations is quantified using Kolmogorov–Smirnov distance values, calculated from empirical cumulative distribution functions of SSM and Tb time series. Results show that agreement of SSM and Tb with observations depends primarily on systematic biases, and the sign of those biases depends on the particular subspace being analyzed (SSM or Tb). This study concludes that the role of increased soil layer discretization on simulated soil moisture and Tb is secondary to the influence of component parameterizations, the effects of which dominate systematic differences with observations.

Restricted access
Michael F. Jasinski, Jordan S. Borak, Sujay V. Kumar, David M. Mocko, Christa D. Peters-Lidard, Matthew Rodell, Hualan Rui, Hiroko K. Beaudoing, Bruce E. Vollmer, Kristi R. Arsenault, Bailing Li, John D. Bolten, and Natthachet Tangdamrongsub

Abstract

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980–2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125° × 0.125° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann–Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr−1 in the upper Great Plains and Northeast to −1 to −9 mm yr−1 in the West and South, net radiation flux trends range from +0.05 to +0.20 W m−2 yr−1 in the East to −0.05 to −0.20 W m−2 yr−1 in the West, and U.S.-wide temperature trends average about +0.03 K yr−1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr−1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m−2 yr−1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr−1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

Open access
Augusto C. V. Getirana, Emanuel Dutra, Matthieu Guimberteau, Jonghun Kam, Hong-Yi Li, Bertrand Decharme, Zhengqiu Zhang, Agnes Ducharne, Aaron Boone, Gianpaolo Balsamo, Matthew Rodell, Ally M. Toure, Yongkang Xue, Christa D. Peters-Lidard, Sujay V. Kumar, Kristi Arsenault, Guillaume Drapeau, L. Ruby Leung, Josyane Ronchail, and Justin Sheffield

Abstract

Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1 and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

Full access
Kristi R. Arsenault, Shraddhanand Shukla, Abheera Hazra, Augusto Getirana, Amy McNally, Sujay V. Kumar, Randal D. Koster, Christa D. Peters-Lidard, Benjamin F. Zaitchik, Hamada Badr, Hahn Chul Jung, Bala Narapusetty, Mahdi Navari, Shugong Wang, David M. Mocko, Chris Funk, Laura Harrison, Gregory J. Husak, Alkhalil Adoum, Gideon Galu, Tamuka Magadzire, Jeanne Roningen, Michael Shaw, John Eylander, Karim Bergaoui, Rachael A. McDonnell, and James P. Verdin

Abstract

Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.

Full access