Search Results

You are looking at 21 - 29 of 29 items for

  • Author or Editor: Yang Gao x
  • All content x
Clear All Modify Search
Shi Liu, Song Yang, Yi Lian, Dawei Zheng, Min Wen, Gang Tu, Baizhu Shen, Zongting Gao, and Donghai Wang

Abstract

The time–frequency characteristics of the variations of temperature and precipitation over the city of Changchun in northeast China and their associations with large-scale atmospheric and oceanic conditions are analyzed. It is found that the variations of the regional climate are characterized by strong semiannual signals. For precipitation, the amplitude of semiannual signal is about half of that of the annual cycle. The relationships of the Changchun temperature and precipitation with local winds and large-scale patterns of atmospheric circulation and sea surface temperature are also strongest on annual and semiannual time scales. These strong semiannual signals are potentially helpful for improving the prediction of the regional climate.

On the annual time scale, the northeast China climate is affected by both the thermal contrast between the Asian continent and the tropical Indo-Pacific Oceans and that between the continent and the extratropical North Pacific. These effects are manifested by the cyclonic (anticyclonic) pattern over the Asian continent (North Pacific) and the strong southerly flow over East Asia and northwestern Pacific associated with increases in temperature and precipitation. On the semiannual time scale, the northeast China climate is mainly related to the large-scale circulation pattern centered over the North Pacific, with its western portion over northeast China, North and South Korea, and Japan. While temperature signals are related to extratropical atmospheric process more apparently, both extratropical and tropical influences are seen in the semiannual variation of precipitation.

There exist strong relationships between Changchun temperature and precipitation and the North Pacific Oscillation (NPO) in the frequency band up to 7 months. Temperature increases and precipitation decreases when NPO is positive. The relationships were weak before 1980 but became stronger afterward, associated with the strengthening of the East Asian trough.

Full access
Yang Yu, Shu-Hua Chen, Yu-Heng Tseng, Xinyu Guo, Jie Shi, Guangliang Liu, Chao Zhang, Yi Xu, and Huiwang Gao

Abstract

The impacts of diurnal atmospheric forcing on the summer salinity change in the East China Sea are investigated using the Regional Ocean Modeling System, forced by the hourly and daily reanalysis of wind and insolation. The differences between the forcing of these two frequencies reveal a dipole pattern of salinity change with a positive salinity deviation (1–2 psu) offshore of the Yangtze River estuary, and a negative deviation (from −1 to −0.5 psu) along the Jiangsu Coast. Further dye tracking experiments confirm that diurnal forcing strengthened the northwestward longshore freshwater transport (NLFT) of the Yangtze River by 5.2 × 109 m3 and reduced the mean water age of 7 days. Sensitivity experiments using different forcing combinations suggest that the diurnal wind, that is, the land–sea breeze, is the key to developing the dipole pattern of salinity change and the NLFT. Through the experiment, the land–sea breeze induced a mean clockwise circulation offshore of the Yangtze River estuary. The above changes resulted from both the nonlinearity of wind stress averaging (i.e., the square nature of wind stress) and the baroclinic adjustment related to the diurnal salinity variation, which is directly connected to the diurnal swing of the Yangtze River front. The baroclinic adjustment generated a dipole pattern of vorticity changes offshore of the Yangtze River estuary and a coherent northwestward jet current strengthening the NLFT. These processes developed the summer dipole pattern of the salinity change.

Free access
Gang Hong, Ping Yang, Bo-Cai Gao, Bryan A. Baum, Yong X. Hu, Michael D. King, and Steven Platnick

Abstract

This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S–30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning–afternoon, and summer–winter variations of high cloud properties are also observed.

Full access
J. Jin, X. Gao, Z.-L. Yang, R. C. Bales, S. Sorooshian, R. E. Dickinson, S. F. Sun, and G. X. Wu

Abstract

A comparative study of three snow models with different complexities was carried out to assess how a physically detailed snow model can improve snow modeling within general circulation models. The three models were (a) the U.S. Army Cold Regions Research and Engineering Laboratory Model (SNTHERM), which uses the mixture theory to simulate multiphase water and energy transfer processes in snow layers; (b) a simplified three-layer model, Snow–Atmosphere–Soil Transfer (SAST), which includes only the ice and liquid-water phases;and (c) the snow submodel of the Biosphere–Atmosphere Transfer Scheme (BATS), which calculates snowmelt from the energy budget and snow temperature by the force–restore method. Given the same initial conditions and forcing of atmosphere and radiation, these three models simulated time series of snow water equivalent, surface temperature, and fluxes very well, with SNTHERM giving the best match with observations and SAST simulation being close. BATS captured the major processes in the upper portion of a snowpack where solar radiation provides the main energy source and gave satisfying results for seasonal periods. Some biases occurred in BATS surface temperature and energy exchange due to its neglecting of liquid water and underestimating snow density. Ice heat conduction, meltwater heat transport, and the melt–freeze process of snow exhibit strong diurnal variations and large gradients at the uppermost layers of snowpacks. Using two layers in the upper 20 cm and one deeper layer at the bottom to simulate the multiphase snowmelt processes, SAST closely approximated the performance of SNTHERM with computational requirements comparable to those of BATS.

Full access
Mengye Chen, Zhi Li, Shang Gao, Xiangyu Luo, Oliver E. J. Wing, Xinyi Shen, Jonathan J. Gourley, Randall L. Kolar, and Yang Hong

Abstract

Because climate change will increase the frequency and intensity of precipitation extremes and coastal flooding, there is a clear need for an integrated hydrology and hydraulic system that has the ability to model the hydrologic conditions over a long period and the flow dynamic representations of when and where the extreme hydrometeorological events occur. This system coupling provides comprehensive information (flood wave, inundation extents, and depths) about coastal flood events for emergency management and risk minimization. This study provides an integrated hydrologic and hydraulic coupled modeling system that is based on the Coupled Routing and Excessive Storage (CREST) model and the Australia National University-Geophysics Australia (ANUGA) model to simulate flood. Forced by the near-real-time Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimates, this integrated modeling system was applied during the 2017 Hurricane Harvey event to simulate the streamflow, the flood extent, and the inundation depth. The results were compared with postevent high-water-mark survey data and its interpolated flood extent by the U.S. Geological Survey and the Federal Emergency Management Agency flood insurance claims, as well as a satellite-based flood map, the National Water Model (NWM), and the Fathom (LISFLOOD-FP) model simulated flood map. The proposed hydrologic and hydraulic model simulation indicated that it could capture 87% of all flood insurance claims within the study area, and the overall error of water depth was 0.91 m, which is comparable to the mainstream operational flood models (NWM and Fathom).

Open access
Lulin Xue, Jiwen Fan, Zachary J. Lebo, Wei Wu, Hugh Morrison, Wojciech W. Grabowski, Xia Chu, István Geresdi, Kirk North, Ronald Stenz, Yang Gao, Xiaofeng Lou, Aaron Bansemer, Andrew J. Heymsfield, Greg M. McFarquhar, and Roy M. Rasmussen

Abstract

The squall-line event on 20 May 2011, during the Midlatitude Continental Convective Clouds (MC3E) field campaign has been simulated by three bin (spectral) microphysics schemes coupled into the Weather Research and Forecasting (WRF) Model. Semi-idealized three-dimensional simulations driven by temperature and moisture profiles acquired by a radiosonde released in the preconvection environment at 1200 UTC in Morris, Oklahoma, show that each scheme produced a squall line with features broadly consistent with the observed storm characteristics. However, substantial differences in the details of the simulated dynamic and thermodynamic structure are evident. These differences are attributed to different algorithms and numerical representations of microphysical processes, assumptions of the hydrometeor processes and properties, especially ice particle mass, density, and terminal velocity relationships with size, and the resulting interactions between the microphysics, cold pool, and dynamics. This study shows that different bin microphysics schemes, designed to be conceptually more realistic and thus arguably more accurate than bulk microphysics schemes, still simulate a wide spread of microphysical, thermodynamic, and dynamic characteristics of a squall line, qualitatively similar to the spread of squall-line characteristics using various bulk schemes. Future work may focus on improving the representation of ice particle properties in bin schemes to reduce this uncertainty and using the similar assumptions for all schemes to isolate the impact of physics from numerics.

Full access
Xuhui Lee, Shoudong Liu, Wei Xiao, Wei Wang, Zhiqiu Gao, Chang Cao, Cheng Hu, Zhenghua Hu, Shuanghe Shen, Yongwei Wang, Xuefa Wen, Qitao Xiao, Jiaping Xu, Jinbiao Yang, and Mi Zhang

Lakes are an important component of the climate system. They provide moisture for precipitation, buffer temperature variations, and contribute to regional atmospheric carbon budgets. This article describes an eddy covariance (EC) mesonet on Lake Taihu, a large (area 2400 km2) and shallow (depth 2 m) lake situated in the heavily populated Yangtze River Delta, China. The mesonet consists of five lake sites, representing different biological attributes and wind–wave patterns, and a land site near the lake shore. Common to all the sites are standard EC instruments for measurement of the momentum, sensible heat, water vapor, and CO2 flux. One site is also equipped with laser-based analyzers for precise measurement of the CO2, CH4, and H2O mixing ratios and their isotopic compositions. To the authors' best knowledge, this is the first lake eddy flux mesonet. Early results reveal evidence of biological and pollution controls on the surface–air fluxes of energy, momentum, and greenhouse gases across the lake. The data will be used to address five science questions: 1) Are lake–air parameterizations established for deep lakes applicable to shallow lakes? 2) Why are lake–land breeze circulations less prevalent in the Taihu lake basin than in lake basins in northern latitudes? 3) How do algal blooms alter the lake–atmosphere interactions? 4) Is this eutrophic lake a source or sink of atmospheric CO2? 5) Does the decay of algal and macrophyte biomass contribute significant amounts of CH4 to the atmosphere?

Full access
Jinyuan Xin, Yuesi Wang, Yuepeng Pan, Dongsheng Ji, Zirui Liu, Tianxue Wen, Yinghong Wang, Xingru Li, Yang Sun, Jie Sun, Pucai Wang, Gehui Wang, Xinming Wang, Zhiyuan Cong, Tao Song, Bo Hu, Lili Wang, Guiqian Tang, Wenkang Gao, Yuhong Guo, Hongyan Miao, Shili Tian, and Lu Wang

Abstract

Based on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on Atmospheric Aerosol Research network of China (CARE-China) was recently established as the country’s first monitoring network for the study of the spatiotemporal distribution of aerosol physical characteristics, chemical components, and optical properties, as well as aerosol gaseous precursors. The network comprises 36 stations in total and adopts a unified approach in terms of the instrumentation, experimental standards, and data specifications. This ongoing project is intended to provide an integrated research platform to monitor online PM2.5 concentrations, nine-size aerosol concentrations and chemical component distributions, nine-size secondary organic aerosol (SOA) component distributions, gaseous precursor concentrations (including SO2, NOx, CO, O3, and VOCs), and aerosol optical properties. The data will be used to identify the sources of regional aerosols, the relative contributions from nature and anthropogenic emissions, the formation of secondary aerosols, and the effects of aerosol component distributions on aerosol optical properties. The results will reduce the levels of uncertainty involved in the quantitative assessment of aerosol effects on regional climate and environmental changes and ultimately provide insight into how to mitigate anthropogenic aerosol emissions in China. The present paper provides a detailed description of the instrumentation, methodologies, and experimental procedures used across the network, as well as a case study of observations taken from one station and the distribution of main components of aerosol over China during 2012.

Full access
William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Kyle Knipper, Alfonso Torres-Rua, Christopher K. Parry, Hector Nieto, Nurit Agam, William A. White, Feng Gao, Lynn McKee, John H. Prueger, Lawrence E. Hipps, Sebastian Los, Maria Mar Alsina, Luis Sanchez, Brent Sams, Nick Dokoozlian, Mac McKee, Scott Jones, Yun Yang, Tiffany G. Wilson, Fangni Lei, Andrew McElrone, Josh L. Heitman, Adam M. Howard, Kirk Post, Forrest Melton, and Christopher Hain

Abstract

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.

Open access