Search Results

You are looking at 31 - 40 of 41 items for

  • Author or Editor: David Karoly x
  • All content x
Clear All Modify Search
Joëlle Gergis, Raphael Neukom, Ailie J. E. Gallant, and David J. Karoly

Abstract

Multiproxy warm season (September–February) temperature reconstructions are presented for the combined land–ocean region of Australasia (0°–50°S, 110°E–180°) covering 1000–2001. Using between 2 (R2) and 28 (R28) paleoclimate records, four 1000-member ensemble reconstructions of regional temperature are developed using four statistical methods: principal component regression (PCR), composite plus scale (CPS), Bayesian hierarchical models (LNA), and pairwise comparison (PaiCo). The reconstructions are then compared with a three-member ensemble of GISS-E2-R climate model simulations and independent paleoclimate records. Decadal fluctuations in Australasian temperatures are remarkably similar between the four reconstruction methods. There are, however, differences in the amplitude of temperature variations between the different statistical methods and proxy networks. When the R28 network is used, the warmest 30-yr periods occur after 1950 in 77% of ensemble members over all methods. However, reconstructions based on only the longest records (R2 and R3 networks) indicate that single 30- and 10-yr periods of similar or slightly higher temperatures than in the late twentieth century may have occurred during the first half of the millennium. Regardless, the most recent instrumental temperatures (1985–2014) are above the 90th percentile of all 12 reconstruction ensembles (four reconstruction methods based on three proxy networks—R28, R3, and R2). The reconstructed twentieth-century warming cannot be explained by natural variability alone using GISS-E2-R. In this climate model, anthropogenic forcing is required to produce the rate and magnitude of post-1950 warming observed in the Australasian region. These paleoclimate results are consistent with other studies that attribute the post-1950 warming in Australian temperature records to increases in atmospheric greenhouse gas concentrations.

Full access
Mandy B. Freund, Josephine R. Brown, Benjamin J. Henley, David J. Karoly, and Jaclyn N. Brown

Abstract

Given the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.

Restricted access
Nikolaos Christidis, Peter A. Stott, Simon Brown, David J. Karoly, and John Caesar

Abstract

Increasing surface temperatures are expected to result in longer growing seasons. An optimal detection analysis is carried out to assess the significance of increases in the growing season length during 1950–99, and to measure the anthropogenic component of the change. The signal is found to be detectable, both on global and continental scales, and human influence needs to be accounted for if it is to be fully explained. The change in the growing season length is found to be asymmetric and largely due to the earlier onset of spring, rather than the later ending of autumn. The growing season length, based on exceedence of local temperature thresholds, has a rate of increase of about 1.5 days decade−1 over the observation area. Local variations also allow for negative trends in parts of North America. The analysis suggests that the signal can be attributed to the anthropogenic forcings that have acted on the climate system and no other forcings are necessary to describe the change. Model projections predict that under future climate change the later ending of autumn will also contribute significantly to the lengthening of the growing season, which will increase in the twenty-first century by more than a month. Such major changes in seasonality will affect physical and biological systems in several ways, leading to important environmental and socioeconomic consequences and adaptation challenges.

Full access
Andrew D. King, Mitchell T. Black, David J. Karoly, and Markus G. Donat
Full access
Andrea J. Dittus, David J. Karoly, Sophie C. Lewis, Lisa V. Alexander, and Markus G. Donat

Abstract

The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.

Full access
Andrea J. Dittus, David J. Karoly, Sophie C. Lewis, and Lisa V. Alexander

Abstract

This study examines trends in the area affected by temperature and precipitation extremes across five large-scale regions using the climate extremes index (CEI) framework. Analyzing changes in temperature and precipitation extremes in terms of areal fraction provides information from a different perspective and can be useful for climate monitoring. Trends in five temperature and precipitation components are analyzed, calculated using a new method based on standard extreme indices. These indices, derived from daily meteorological station data, are obtained from two global land-based gridded extreme indices datasets. The four continental-scale regions of Europe, North America, Asia, and Australia are analyzed over the period from 1951 to 2010, where sufficient data coverage is available. These components are also computed for the entire Northern Hemisphere, providing the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much-above-average warm days and nights and much-below-average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe and North America.

Full access
Fiona M. Guest, Michael J. Reeder, Crispin J. Marks, and David J. Karoly

Abstract

This study examines the properties of inertia–gravity waves observed in the lower stratosphere over Macquarie Island, how these properties vary with season, and the likely source of the waves. The waves are observed in high-resolution upper-air ozonesonde soundings of wind and temperature released from Macquarie Island during the 1994 ASHOE–MAESA program.

The properties of the inertia–gravity waves observed in the soundings are quantified using hodograph and rotary spectral analyses. The analyzed waves have horizontal wavelengths between 100 and 1000 km, vertical wavelengths between about 1 and 7 km, intrinsic frequencies between f and 2f, and horizontal trace speeds between −50 and 30 m s−1. There appears to be a seasonal cycle in the inertia–gravity wave activity in the lower stratosphere, the minimum being in the austral winter when the background zonal flow is strong and westerly and its vertical shear is positive. In contrast, the variance of the horizontal perturbation winds does not show a similar seasonal cycle.

Inertia–gravity waves are detected over Macquarie Island on days with a common synoptic pattern. Two features define this synoptic pattern: 1) an upper-level jet and associated surface front lying upstream of Macquarie Island, and 2) a 300-hPa height field with Macquarie Island located between the inflection axis and the downstream ridge. This common synoptic pattern is observed on 16 of the 21 days on which inertia–gravity waves were detected. Moreover, the pattern is not observed on 15 of the 21 days in which inertia–gravity waves are not identified. This common synoptic pattern shows a seasonal cycle similar to that found for the inertia–gravity wave activity. Analyses of the ozonesonde soundings suggest also that the source of the inertia–gravity waves is in the troposphere. Using GROGRAT, the ray-tracing model developed by Marks and Eckermann, a cone of rays is released 21 km above Macquarie Island and traced backward in time. These rays suggest that the inertia–gravity waves are generated in the jet–front system southwest of Macquarie Island.

Full access
Diandong Ren, Rong Fu, Lance M. Leslie, Jianli Chen, Clark R. Wilson, and David J. Karoly

Abstract

This study applies a multiphase, multiple-rheology, scalable, and extensible geofluid model to the Greenland Ice Sheet (GrIS). The model is driven by monthly atmospheric forcing from global climate model simulations. Novel features of the model, referred to as the scalable and extensible geofluid modeling system (SEGMENT-Ice), include using the full Navier–Stokes equations to account for nonlocal dynamic balance and its influence on ice flow, and a granular sliding layer between the bottom ice layer and the lithosphere layer to provide a mechanism for possible large-scale surges in a warmer future climate (granular basal layer is for certain specific regions, though). Monthly climate of SEGMENT-Ice allows an investigation of detailed features such as seasonal melt area extent (SME) over Greenland. The model reproduced reasonably well the annual maximum SME and total ice mass lost rate when compared observations from the Special Sensing Microwave Imager (SSM/I) and Gravity Recovery and Climate Experiment (GRACE) over the past few decades.

The SEGMENT-Ice simulations are driven by projections from two relatively high-resolution climate models, the NCAR Community Climate System Model, version 3 (CCSM3) and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)], under a realistic twenty-first-century greenhouse gas emission scenario. They suggest that the surface flow would be enhanced over the entire GrIS owing to a reduction of ice viscosity as the temperature increases, despite the small change in the ice surface topography over the interior of Greenland. With increased surface flow speed, strain heating induces more rapid heating in the ice at levels deeper than due to diffusion alone. Basal sliding, especially for granular sediments, provides an efficient mechanism for fast-glacier acceleration and enhanced mass loss. This mechanism, absent from other models, provides a rapid dynamic response to climate change. Net mass loss estimates from the new model should reach ~220 km3 yr−1 by 2100, significantly higher than estimates by the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 4 (AR4) of ~50–100 km3 yr−1. By 2100, the perennial frozen surface area decreases up to ~60%, to ~7 × 105 km2, indicating a massive expansion of the ablation zone. Ice mass change patterns, particularly along the periphery, are very similar between the two climate models.

Full access
Gabriele C. Hegerl, Thomas R. Karl, Myles Allen, Nathaniel L. Bindoff, Nathan Gillett, David Karoly, Xuebin Zhang, and Francis Zwiers

Abstract

A significant influence of anthropogenic forcing has been detected in global- and continental-scale surface temperature, temperature of the free atmosphere, and global ocean heat uptake. This paper reviews outstanding issues in the detection of climate change and attribution to causes. The detection of changes in variables other than temperature, on regional scales and in climate extremes, is important for evaluating model simulations of changes in societally relevant scales and variables. For example, sea level pressure changes are detectable but are significantly stronger in observations than the changes simulated in climate models, raising questions about simulated changes in climate dynamics. Application of detection and attribution methods to ocean data focusing not only on heat storage but also on the penetration of the anthropogenic signal into the ocean interior, and its effect on global water masses, helps to increase confidence in simulated large-scale changes in the ocean.

To evaluate climate change signals with smaller spatial and temporal scales, improved and more densely sampled data are needed in both the atmosphere and ocean. Also, the problem of how model-simulated climate extremes can be compared to station-based observations needs to be addressed.

Full access
William Randel, Petra Udelhofen, Eric Fleming, Marvin Geller, Mel Gelman, Kevin Hamilton, David Karoly, Dave Ortland, Steve Pawson, Richard Swinbank, Fei Wu, Mark Baldwin, Marie-Lise Chanin, Philippe Keckhut, Karin Labitzke, Ellis Remsberg, Adrian Simmons, and Dong Wu

Abstract

An updated assessment of uncertainties in “observed” climatological winds and temperatures in the middle atmosphere (over altitudes ∼10–80 km) is provided by detailed intercomparisons of contemporary and historic datasets. These datasets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, historical reference atmosphere circulation statistics, rocketsonde wind and temperature data, and lidar temperature measurements. The comparisons focus on a few basic circulation statistics (temperatures and zonal winds), with special attention given to tropical variability. Notable differences are found between analyses for temperatures near the tropical tropopause and polar lower stratosphere, temperatures near the global stratopause, and zonal winds throughout the Tropics. Comparisons of historical reference atmosphere and rocketsonde temperatures with more recent global analyses show the influence of decadal-scale cooling of the stratosphere and mesosphere. Detailed comparisons of the tropical semiannual oscillation (SAO) and quasi- biennial oscillation (QBO) show large differences in amplitude between analyses; recent data assimilation schemes show the best agreement with equatorial radiosonde, rocket, and satellite data.

Full access