Search Results

You are looking at 31 - 40 of 53 items for

  • Author or Editor: James P. Kossin x
  • All content x
Clear All Modify Search
Christopher M. Rozoff, James P. Kossin, Wayne H. Schubert, and Pedro J. Mulero

Abstract

In hurricane eyewalls, the vertical stretching effect tends to produce an annular ring of high vorticity. Idealized, unforced nondivergent barotropic model results have suggested such rings of vorticity are often barotropically unstable, leading to strong asymmetric mixing events where vorticity is mixed inward into a more stable configuration. Such mixing events most often result in weakened maximum winds. The manner in which forcing modifies these unforced simulations remains an open question.

In the current study, a forced, two-dimensional barotropic model is used to systematically study the sensitivity of vorticity rings to ring geometry and spatially and temporally varying forcing. The simulations reveal an internal mechanism that interrupts the intensification process resulting from vorticity generation in the hurricane eyewall. This internal control mechanism is due to vorticity mixing in the region of the eye and eyewall and can manifest itself in two antithetical forms—as a transient “intensification brake” during symmetric intensification or as an enhancer of intensification through efficient transport of vorticity from the eyewall, where it is generated, to the eye.

Full access
Christopher M. Rozoff, David S. Nolan, James P. Kossin, Fuqing Zhang, and Juan Fang

Abstract

The Weather and Research and Forecasting Model (WRF) is used to simulate secondary eyewall formation (SEF) in a tropical cyclone (TC) on the β plane. The simulated SEF process is accompanied by an outward expansion of kinetic energy and the TC warm core. An absolute angular momentum budget demonstrates that this outward expansion is predominantly a symmetric response to the azimuthal-mean and wavenumber-1 components of the transverse circulation. As the kinetic energy expands outward, the kinetic energy efficiency in which latent heating can be retained as local kinetic energy increases near the developing outer eyewall.

The kinetic energy efficiency associated with SEF is examined further using a symmetric linearized, nonhydrostatic vortex model that is configured as a balanced vortex model. Given the symmetric tangential wind and temperature structure from WRF, which is close to a state of thermal wind balance above the boundary layer, the idealized model provides the transverse circulation associated with the symmetric latent heating and friction prescribed from WRF. In a number of ways, this vortex response matches the azimuthal-mean secondary circulation in WRF. These calculations suggest that sustained azimuthal-mean latent heating outside of the primary eyewall will eventually lead to SEF. Sensitivity experiments with the balanced vortex model show that, for a fixed amount of heating, SEF is facilitated by a broadening TC wind field.

Full access
John A. Knaff, Thomas A. Cram, Andrea B. Schumacher, James P. Kossin, and Mark DeMaria

Abstract

Annular hurricanes are a subset of intense tropical cyclones that have been shown in previous work to be significantly stronger, to maintain their peak intensities longer, and to weaken more slowly than average tropical cyclones. Because of these characteristics, they represent a significant forecasting challenge. This paper updates the list of annular hurricanes to encompass the years 1995–2006 in both the North Atlantic and eastern–central North Pacific tropical cyclone basins. Because annular hurricanes have a unique appearance in infrared satellite imagery, and form in a specific set of environmental conditions, an objective real-time method of identifying these hurricanes is developed. However, since the occurrence of annular hurricanes is rare (∼4% of all hurricanes), a special algorithm to detect annular hurricanes is developed that employs two steps to identify the candidates: 1) prescreening the data and 2) applying a linear discriminant analysis. This algorithm is trained using a dependent dataset (1995–2003) that includes 11 annular hurricanes. The resulting algorithm is then independently tested using datasets from the years 2004–06, which contained an additional three annular hurricanes. Results indicate that the algorithm is able to discriminate annular hurricanes from tropical cyclones with intensities greater than 84 kt (43.2 m s−1). The probability of detection or hit rate produced by this scheme is shown to be ∼96% with a false alarm rate of ∼6%, based on 1363 six-hour time periods with a tropical cyclone with an intensity greater than 84 kt (1995–2006).

Full access
Matthew Sitkowski, James P. Kossin, Christopher M. Rozoff, and John A. Knaff

Abstract

Flight-level aircraft data are used to examine inner-core thermodynamic changes during eyewall replacement cycles (ERCs) and the role of the relict inner eyewall circulation on the evolution of a hurricane during and following an ERC. Near the end of an ERC, the eye comprises two thermodynamically and kinematically distinct air masses separated by a relict wind maximum, inside of which high inertial stability restricts radial motion creating a “containment vessel” that confines the old-eye air mass. Restricted radial flow aloft also reduces subsidence within this confined region. Subsidence-induced warming is thus focused along the outer periphery of the developing post-ERC eye, which leads to a flattening of the pressure profile within the eye and a steepening of the gradient at the eyewall. This then causes a local intensification of the winds in the eyewall. The cessation of active convection and subsidence near the storm center, which has been occurring over the course of the ERC, leads to an increase in minimum pressure. The increase in minimum pressure concurrent with the increase of winds in the developing eyewall can create a highly anomalous pressure–wind relationship. When the relict inner eyewall circulation dissipates, the air masses are free to mix and subsidence can resume more uniformly over the entire eye.

Full access
Kimberly J. Mueller, Mark DeMaria, John Knaff, James P. Kossin, and Thomas H. Vonder Haar

Abstract

Geostationary infrared (IR) satellite data are used to provide estimates of the symmetric and total low-level wind fields in tropical cyclones, constructed from estimations of an azimuthally averaged radius of maximum wind (RMAX), a symmetric tangential wind speed at a radius of 182 km (V182), a storm motion vector, and the maximum intensity (VMAX). The algorithm is derived using geostationary IR data from 405 cases from 87 tropical systems in the Atlantic and east Pacific Ocean basins during the 1995–2003 hurricane seasons that had corresponding aircraft data available. The algorithm is tested on 50 cases from seven tropical storms and hurricanes during the 2004 season. Aircraft-reconnaissance-measured RMAX and V182 are used as dependent variables in a multiple linear regression technique, and VMAX and the storm motion vector are estimated using conventional methods. Estimates of RMAX and V182 exhibit mean absolute errors (MAEs) of 27.3 km and 6.5 kt, respectively, for the dependent samples. A modified combined Rankine vortex model is used to estimate the one-dimensional symmetric tangential wind field from VMAX, RMAX, and V182. Next, the storm motion vector is added to the symmetric wind to produce estimates of the total wind field. The MAE of the IR total wind retrievals is 10.4 kt, and the variance explained is 53%, when compared with the two-dimensional wind fields from the aircraft data for the independent cases.

Full access
Christopher M. Rozoff, Christopher S. Velden, John Kaplan, James P. Kossin, and Anthony J. Wimmers

Abstract

The probabilistic prediction of tropical cyclone (TC) rapid intensification (RI) in the Atlantic and eastern Pacific Ocean basins is examined here using a series of logistic regression models trained on environmental and infrared satellite-derived features. The environmental predictors are based on averaged values over a 24-h period following the forecast time. These models are compared against equivalent models enhanced with additional TC predictors created from passive satellite microwave imagery (MI). Leave-one-year-out cross validation on the developmental dataset shows that the inclusion of MI-based predictors yields more skillful RI models for a variety of RI and intensity thresholds. Compared with the baseline forecast skill of the non-MI-based RI models, the relative skill improvements from including MI-based predictors range from 10.6% to 44.9%. Using archived real-time data during the period 2004–13, evaluation of simulated real-time models is also carried out. Unlike in the model development stage, the simulated real-time setting involves using Global Forecast System forecasts for the non-satellite-based predictors instead of “perfect” observational-based predictors in the developmental data. In this case, the MI-based RI models still generate superior skill to the baseline RI models lacking MI-based predictors. The relative improvements gained in adding MI-based predictors are most notable in the Atlantic, where the non-MI versions of the models suffer acutely from the use of imperfect real-time data. In the Atlantic, relative skill improvements provided from the inclusion of MI-based predictors range from 53.5% to 103.0%. The eastern Pacific relative improvements are less impressive but are still uniformly positive.

Full access
Carl J. Schreck III, Lei Shi, James P. Kossin, and John J. Bates

Abstract

The Madden–Julian oscillation (MJO) and convectively coupled equatorial waves are the dominant modes of synoptic-to-subseasonal variability in the tropics. These systems have frequently been examined with proxies for convection such as outgoing longwave radiation (OLR). However, upper-tropospheric water vapor (UTWV) gives a more complete picture of tropical circulations because it is more sensitive to the drying and warming associated with subsidence. Previous studies examined tropical variability using relatively short (3–7 yr) UTWV datasets. Intersatellite calibration of data from the High Resolution Infrared Radiation Sounder (HIRS) has recently produced a homogeneous 32-yr climate data record of UTWV for 200–500 hPa. This study explores the utility of HIRS UTWV for identifying the MJO and equatorial waves.

Spectral analysis shows that the MJO and equatorial waves stand out above the low-frequency background in UTWV, similar to previous findings with OLR. The fraction of variance associated with the MJO and equatorial Rossby waves is actually greater in UTWV than in OLR. Kelvin waves, on the other hand, are overshadowed in UTWV by horizontal advection from extratropical Rossby waves.

For the MJO, UTWV identifies subsidence drying in the subtropics, poleward of the convection. These dry anomalies are associated with the MJO’s subtropical Rossby gyres. MJO events with dry anomalies over the central North Pacific Ocean also amplify the 200-hPa flow pattern over North America 7 days later. These events cannot be identified using equatorial OLR alone, which demonstrates that UTWV is a useful supplement for identifying the MJO, equatorial waves.

Full access
James P. Kossin, Thomas R. Karl, Thomas R. Knutson, Kerry A. Emanuel, Kenneth E. Kunkel, and James J. O’Brien
Full access
Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott
Full access
Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott
Full access