Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: John M. Peters x
  • All content x
Clear All Modify Search
Michael F. Jasinski, Jordan S. Borak, Sujay V. Kumar, David M. Mocko, Christa D. Peters-Lidard, Matthew Rodell, Hualan Rui, Hiroko K. Beaudoing, Bruce E. Vollmer, Kristi R. Arsenault, Bailing Li, John D. Bolten, and Natthachet Tangdamrongsub

Abstract

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980–2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125° × 0.125° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann–Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr−1 in the upper Great Plains and Northeast to −1 to −9 mm yr−1 in the West and South, net radiation flux trends range from +0.05 to +0.20 W m−2 yr−1 in the East to −0.05 to −0.20 W m−2 yr−1 in the West, and U.S.-wide temperature trends average about +0.03 K yr−1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr−1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m−2 yr−1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr−1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

Open access
Kristi R. Arsenault, Shraddhanand Shukla, Abheera Hazra, Augusto Getirana, Amy McNally, Sujay V. Kumar, Randal D. Koster, Christa D. Peters-Lidard, Benjamin F. Zaitchik, Hamada Badr, Hahn Chul Jung, Bala Narapusetty, Mahdi Navari, Shugong Wang, David M. Mocko, Chris Funk, Laura Harrison, Gregory J. Husak, Alkhalil Adoum, Gideon Galu, Tamuka Magadzire, Jeanne Roningen, Michael Shaw, John Eylander, Karim Bergaoui, Rachael A. McDonnell, and James P. Verdin

Abstract

Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.

Full access