Search Results

You are looking at 31 - 40 of 53 items for

  • Author or Editor: Ping Huang x
  • All content x
Clear All Modify Search
Huei-Ping Huang, Andrew W. Robertson, Yochanan Kushnir, and Shiling Peng

Abstract

Hindcast experiments for the tropical Atlantic sea surface temperature (SST) gradient G1, defined as tropical North Atlantic SST anomaly minus tropical South Atlantic SST anomaly, are performed using an atmospheric general circulation model coupled to a mixed layer ocean over the Atlantic to quantify the contributions of the El Niño–Southern Oscillation (ENSO) forcing and the preconditioning in the Atlantic to G1 in boreal spring. The results confirm previous observational analyses that, in the years with a persistent ENSO SST anomaly from boreal winter to spring, the ENSO forcing plays a primary role in determining the tendency of G1 from winter to spring and the sign of G1 in late spring. In the hindcasts, the initial perturbations in Atlantic SST in boreal winter are found to generally persist beyond a season, leaving a secondary but nonnegligible contribution to the predicted Atlantic SST gradient in spring. For 1993/94, a neutral year with a large preexisting G1 in winter, the hindcast using the information of Atlantic preconditioning alone is found to reproduce the observed G1 in spring. The seasonal predictability in precipitation over South America is examined in the hindcast experiments. For the recent events that can be validated with high-quality observations, the hindcasts produced dryness in boreal spring 1983, wetness in spring 1996, and wetness in spring 1994 over northern Brazil that are qualitatively consistent with observations. An inclusion of the Atlantic preconditioning is found to help the prediction of South American rainfall in boreal spring. For the ENSO years, discrepancies remain between the hindcast and observed precipitation anomalies over northern and equatorial South America, an error that is partially attributed to the biased atmospheric response to ENSO forcing in the model. The hindcast of the 1993/94 neutral year does not suffer this error. It constitutes an intriguing example of useful seasonal forecast of G1 and South American rainfall anomalies without ENSO.

Full access
Huei-Ping Huang, Klaus M. Weickmann, and C. Juno Hsu

Abstract

The authors investigate the change of atmospheric angular momentum (AAM) in long, transient, coupled atmosphere–ocean model simulations with increasing atmospheric greenhouse gas concentration and sulfate aerosol loading. A significant increase of global AAM, on the order of 4 × 1025 kg m2 s−1 for 3 × CO2–1 × CO2, was simulated by the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model. The increase was mainly contributed by the relative component of total AAM in the form of an acceleration of zonal mean zonal wind in the tropical–subtropical upper troposphere. Thus, under strong global warming, a superrotational state emerged in the tropical upper troposphere. The trend in zonal mean zonal wind in the meridional plane was characterized by 1) a tropical–subtropical pattern with two maxima near 30° in the upper troposphere, and 2) a tripole pattern in the Southern Hemisphere extending through the entire troposphere and having a positive maximum at 60°S. The implication of the projected increase of global AAM for future changes of the length of day is discussed.

The CCCma coupled global warming simulation, like many previous studies, shows a significant increase of tropical SST and includes a zonally asymmetric component that resembles El Niño SST anomalies. In the CCCma transient simulations, even though the tropical SST and global AAM both increased nonlinearly with time, the ratio of their time increments ΔAAM/ΔSST remained approximately constant at about 0.9 × 1025 kg m2 s−1 (°C)−1. This number is close to its counterpart for the observed global AAM response to El Niño. It is suggested that this ratio may be useful as an index for intercomparisons of different coupled model simulations.

Full access
Jun Ying, Ping Huang, Tao Lian, and Dake Chen

Abstract

This study investigates the mechanism of the large intermodel uncertainty in the change of ENSO’s amplitude under global warming based on 31 CMIP5 models. We find that the uncertainty in ENSO’s amplitude is significantly correlated to that of the change in the response of atmospheric circulation to SST anomalies (SSTAs) in the eastern equatorial Pacific Niño-3 region. This effect of the atmospheric response to SSTAs mainly influences the uncertainty in ENSO’s amplitude during El Niño (EN) phases, but not during La Niña (LN) phases, showing pronounced nonlinearity. The effect of the relative SST warming and the present-day response of atmospheric circulation to SSTAs are the two major contributors to the intermodel spread of the change in the atmospheric response to SSTAs, of which the latter is more important. On the one hand, models with a stronger (weaker) mean-state SST warming in the eastern equatorial Pacific, relative to the tropical-mean warming, favor a larger (smaller) increase in the change in the response of atmospheric circulation to SSTAs in the eastern equatorial Pacific during EN. On the other hand, models with a weaker (stronger) present-day response of atmospheric circulation to SSTAs during EN tend to exhibit a larger (smaller) increase in the change under global warming. The result implies that an improved simulation of the present-day response of atmospheric circulation to SSTAs could be effective in lowering the uncertainty in ENSO’s amplitude change under global warming.

Full access
Yan Du, Shang-Ping Xie, Gang Huang, and Kaiming Hu

Abstract

El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.

Full access
Huei-Ping Huang, Klaus M. Weickmann, and Richard D. Rosen

Abstract

The global atmospheric angular momentum (AAM) is known to increase with tropical eastern Pacific sea surface temperature (SST) anomalies during El Niño events. Using a reanalysis dataset, the ratio of the monthly AAM anomaly to El Niño SST anomaly (based on the Niño-3.4 index) is found to be approximately 1 angular momentum unit (=1025 kg m2 s−1) per degree Celsius for most post-1975 El Niños. This ratio is much smaller, however, during the 1965/66 and 1972/73 El Niños, raising the possibilities that either the early reanalysis data are in error due to sparse observations, or the atmospheric response to the two early El Niños was unusual. The possibility of a severe data problem in the reanalysis is ruled out by cross-validating the AAM time series with independent measurements of length of day. The latitudinal structures of the zonal wind anomalies in 1965/66 and 1972/73 are examined for both the reanalysis and a set of general circulation model (GCM) simulations. Multiple GCM runs with specified SST produce a more positive ensemble-mean AAM anomaly in 1965 than its counterpart in the reanalysis. The GCM-simulated ensemble-mean zonal wind anomaly resembles the canonical El Niño response with accelerations of subtropical zonal jets in both hemispheres, a pattern that is almost absent in the reanalysis. On the other hand, a large spread exists among the individual ensemble members in the 1965/66 GCM simulations. Although the majority of the individual ensemble members shows the canonical El Niño response, two outliers (out of 12 runs) exhibit very small zonal wind responses in the Northern Hemisphere similar to the reanalysis. Thus, the observed AAM anomaly during 1965/66 is interpreted as an outlier with atmospheric noise being strong enough to overwhelm the canonical El Niño response. The low AAM in the 1972/73 event is related in the reanalysis to a significantly negative zonal wind response on the equator. This signal is robustly reproduced, although with a slightly smaller amplitude, in the ensemble mean and all individual ensemble members in the GCM simulations. The small ensemble standard deviation and large ensemble-mean response on the equator indicate that the negative response is due to the lower-boundary forcing related to the SST anomaly. The fact that the AAM anomaly in 1972/73 is not well correlated with the Niño-3.4 index, then, indicates that SST anomalies outside the conventional El Niño region may be responsible for the low AAM. The uncharacteristically low values of global AAM in 1965/66 and 1972/73 contribute to a low mean for the decade before 1975, which, combined with high AAM in the post-1980 era, produces a significant upward trend in AAM in the second half of the twentieth century. If the weak AAM anomalies during the two pre-1975 El Niños are due to random noise or incidental non-El Niño influences, taking them at face value would result in an overestimate of about 15%–20% in the multidecadal trend of AAM due to boundary forcing alone. Notably, a multidecadal trend in AAM is also simulated in the ensemble mean of the multiple GCM runs, but its magnitude is smaller than the observed counterpart and more consistent with the multidecadal trend of the Niño-3.4 index. The implications of these findings for climate change detection are discussed.

Full access
Jiayu Zhang, Ping Huang, Fei Liu, and Shijie Zhou

Abstract

This study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability – represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′) – under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE M¯, and its future change ΔM¯. Under global warming, the middle-level vertical gradient of MSE increases slightly over Indian Ocean and maritime continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual timescales consequently, mainly determined by the lower boundary moisture condition in the response of SST change pattern.

Restricted access
Samy Kamal, Huei-Ping Huang, and Soe W. Myint

Abstract

In this study, the Weather Research and Forecasting (WRF) Model and its embedded land surface and urban canopy model are used to simulate effects of urbanization on the local climate of the Las Vegas, Nevada, metropolitan area. High-resolution simulations are performed with a 3-km horizontal resolution over the city. With identical lateral boundary conditions, three land use/land cover (LULC) maps for 2006, 1992, and hypothetical 1900 are used in multiple simulations. The differences in the simulated climate among those cases are used to quantify the urban effect. The study found that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling trend during the day. An analysis of the surface energy balance helps illustrate the major roles of the decreases in surface albedo of solar radiation and increases in the effective emissivity of longwave radiation in shaping the local climate change in Las Vegas. In addition, the emerging urban structures are found to have a mechanical effect of slowing down the climatological wind field over the urban area as a result of an increased effective surface roughness. The slowing down of the diurnal circulation leads to a secondary modification of temperature, which exhibits a complicated diurnal dependence. This suggests the need for more investigations into the coupling of thermodynamic and mechanical effects of urbanization on local climate.

Full access
Guihua Wang, Shang-Ping Xie, Rui Xin Huang, and Changlin Chen

Abstract

The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.

Full access
Chien-Ben Chou, Ching-Yuang Huang, Huei-Ping Huang, Kung-Hwa Wang, and Tien-Chiang Yeh

Abstract

In this study, the Advanced Microwave Sounding Unit (AMSU) data are used to retrieve the temperature and velocity fields of typhoons and assimilate them with the three-dimensional variational data assimilation (3DVAR) routines for uses in numerical model predictions for typhoons. The authors’ procedure of an end-to-end typhoon prediction using an AMSU-based initial condition is similar to the framework developed by Zhu et al. in 2002 but differs from it by considering a downward integration approach in part of the retrieval process and with the starting point of the integration chosen as a constant 50-hPa field without any structure. The typhoon circulation from this retrieval is thus determined objectively from the AMSU observation alone, without a preimposed typhoon vortex structure, allowing an asymmetric structure even at the inner core of a typhoon. The results show that this procedure is capable of retrieving a reasonable typhoon circulation from the AMSU data. The impact of the AMSU data on the assimilated initial condition for prediction is shown to be especially notable in its modification of the upper-level circulation of the typhoons. With the downward integration, the error accumulates downward such that the current approach provides a relatively more accurate estimate of the upper-level circulation, important for the steering of a typhoon. Consistent with this, it is demonstrated that the inclusion of the AMSU data helps to improve the forecast of typhoon tracks for selected cases of typhoons. This approach is less satisfying in producing an accurate retrieval and prediction of the intensity of typhoons. The reasons for this shortcoming and possible future remedies are discussed.

Full access
Wenping Jiang, Gang Huang, Ping Huang, Renguang Wu, Kaiming Hu, and Wei Chen

Abstract

This study investigates the characteristics and maintaining mechanisms of the anomalous northwest Pacific anticyclone (NWPAC) following different El Niño decaying paces. In fast decaying El Niño summers, the positive SST anomalies in the tropical central-eastern Pacific (TCEP) have transformed to negative, and positive SST anomalies appear around the Maritime Continent (MC), whereas in slow decaying El Niño summers, positive SST anomalies are present in the TCEP and in the tropical Indian Ocean (TIO). During fast decaying El Niño summers, the cold Rossby wave in response to the negative TCEP SST anomalies has a primary contribution to maintaining the NWPAC anomalies. The warm Kelvin wave response and enhanced Hadley circulation anomalies forced by the positive MC SST anomalies also facilitate developing the NWPAC anomalies. During slow decaying El Niño summers, the warm Kelvin wave anchored over the TIO plays a crucial role in sustaining the NWPAC anomalies, while the warm Rossby wave triggered by the positive TCEP SST anomalies weakens the western part of the NWPAC anomalies. The southwesterly anomalies of the NWPAC anomalies during fast decaying El Niño summers can reach to higher latitudes than those during slow decaying El Niño summers. Correspondingly, positive rainfall anomalies appear in northern China and the Yangtze River basin in fast decaying El Niño summers but are only distributed in the Yangtze River basin in slow decaying El Niño summers. This study implies that the El Niño decaying pace is a key factor in East Asian summer climate.

Full access