Search Results

You are looking at 31 - 40 of 94 items for

  • Author or Editor: Wen Chen x
  • All content x
Clear All Modify Search
Xiuzhen Li, Zhiping Wen, Deliang Chen, and Zesheng Chen

Abstract

The El Niño–Southern Oscillation (ENSO) cycle has a great impact on the summer moisture circulation over East Asia (EA) and the western North Pacific [WNP (EA-WNP)] on an interannual time scale, and its modulation is mainly embedded in the leading mode. In contrast to the stable influence of the mature phase of ENSO, the impact of synchronous eastern Pacific sea surface temperature anomalies (SSTAs) on summer moisture circulation is negligible during the 1970s–80s, while it intensifies after 1991. In response, the interannual variation of moisture circulation exhibits a much more widespread anticyclonic/cyclonic pattern over the subtropical WNP and a weaker counterpart to the north after 1991. Abnormal moisture moves farther northward with the enhanced moisture convergence, and thus precipitation shifts from the Yangtze River to the Huai River valley. The decadal shift in the modulation of ENSO on moisture circulation arises from a more rapid evolution of the bonding ENSO cycle and its stronger coupling with circulation over the Indian Ocean after 1991. The rapid development of cooling SSTAs over the central-eastern Pacific, and warming SSTAs to the west over the eastern Indian Ocean–Maritime Continent (EIO-MC) in summer, stimulates abnormal descending motion over the western-central Pacific and ascending motion over the EIO-MC. The former excites an anticyclone over the WNP as a Rossby wave response, sustaining and intensifying the WNP anticyclone; the latter helps anchor the anticyclone over the tropical–subtropical WNP via an abnormal southwest–northeast vertical circulation between EIO-MC and WNP.

Full access
Peng Hu, Wen Chen, Shangfeng Chen, Yuyun Liu, and Ruping Huang

Abstract

The El Niño–Southern Oscillation (ENSO) is regarded as one of the most important factors for onset of the South China Sea summer monsoon (SCSSM). Previous studies generally indicated that an El Niño event tends to result in a late onset of the SCSSM monsoon. However, this relationship has not been true in recent years, particularly when an extremely early SCSSM onset (1 May 2019) occurred following the 2018/19 El Niño event in the preceding winter. The processes of the second earliest SCSSM onset in the past 41 years were investigated using NCEP–DOE reanalysis, OLR data, and ERSST. A negative sea surface temperature and associated anticyclonic anomalies were absent over the western North Pacific in the late spring of 2019 following an El Niño event in the preceding winter. Thus, the mean circulation in the late spring of 2019 does not prevent SCSSM onset, which is in sharp contrast to the composited spring of the El Niño decaying years. The convective active and westerly phases of a 30–60-day oscillation originating from the Indian Ocean provided a favorable background for the SCSSM onset in 2019. In addition, the monsoon onset vortex over the Bay of Bengal and the cold front associated with a midlatitude trough over East Asia also played important roles in triggering the early onset of the SCSSM in 2019. No tropical cyclone appeared over the western North Pacific during April and May, and the enhancement of quasi-biweekly oscillation mainly occurs after the SCSSM onset; thus, these two factors contribute little to the SCSSM onset in 2019.

Free access
Peiqiang Xu, Lin Wang, Wen Chen, Juan Feng, and Yuyun Liu

Abstract

The Pacific–Japan (PJ) pattern, also known as the East Asia–Pacific pattern, is a teleconnection that significantly influences the East Asian summer climate on various time scales. Based on several reanalysis and observational datasets, this study suggests that the PJ pattern has experienced a distinct three-dimensional structural change in the late 1990s. Compared with those during 1979–98, the PJ pattern shifts eastward by approximately 20° during 1999–2015, and the intensity of its barotropic structure in the extratropics weakens significantly. As a result, its influences on the summer rainfall along the mei-yu band are weakened after the late 1990s. These observed changes can be attributed to three reasons. First, the location where the PJ pattern is excited shifts eastward. Second, the easterly shear of the background wind is very weak around the source region of the PJ pattern after the late 1990s, which prevents the convection-induced baroclinic mode from converting into barotropic mode and thereby from propagating into the extratropics. Third, the PJ pattern–induced rainfall anomalies are weak along the mei-yu band after the late 1990s. As a result, their feedbacks to the PJ pattern become weak and play a considerably reduced role in maintaining the structure of the PJ pattern in the midlatitudes. In contrast, the eddy energy conversion from the basic flow efficiently maintains the PJ pattern before and after the late 1990s and thereby contributes little to the observed change.

Full access
Wenxin Zeng, Guixing Chen, Yu Du, and Zhiping Wen

Abstract

A succession of MCSs developed during the last week of October 2016 and produced extreme heavy rainfall in central China. The event underwent an evident shift from a mei-yu-like warm scenario to an autumn cold scenario. Diurnal cycles of rainfall and low-level winds may be modulated by the shifting of large-scale atmospheric conditions. We conducted observational analyses and numerical experiments to examine how large-scale circulations influenced rainfall systems through diurnally varying processes. The results show that, in the first half (warm) period of the event, intense rainfall mostly occurred in eastern-central China with an early morning peak. It was closely related to a nocturnal southwesterly low-level jet (NLLJ) on the flank of the western Pacific subtropical high. The NLLJ formed near midnight in southern China where ageostrophic wind rotated clockwise due to Blackadar’s inertial oscillation. The NLLJ extended downstream to central China during the predawn hours due to the horizontal advection of momentum. Both the formation and extension of the NLLJ were supported by an enhanced subtropical high that provided relatively warm conditions with surface heating for boundary layer inertial oscillation and strong background southwesterly winds for momentum transport. The NLLJ induced MCSs at its northern terminus where the low-level ascent, moisture flux convergence, and convective instability were enhanced during the predawn hours. In the second half period with an intrusion of cold air, the diurnal amplitude of low-level winds became small under relatively cold and cloudy conditions. Moderate rainfall tended to occur in western-central China with a peak after midnight, most likely due to frontogenetic processes, upslope lifting, and nighttime cloud-top cooling.

Free access
Guixing Chen, Weiming Sha, Toshiki Iwasaki, and Zhiping Wen

Abstract

Moist convection occurred repeatedly in the midnight-to-morning hours of 11–16 June 1998 and yielded excessive rainfall in a narrow latitudinal corridor over East Asia, causing severe flood. Numerical experiments and composite analyses of a 5-day period are performed to examine the mechanisms governing nocturnal convection. Both simulations and observations show that a train of MCSs concurrently developed along a quasi-stationary mei-yu front and coincided with the impact of a monsoon surge on a frontogenetic zone at night. This process was regulated primarily by a nocturnal low-level jet (NLLJ) in the southwesterly monsoon that formed over southern China and extended to central China. In particular, the NLLJ acted as a mechanism of moisture transport over the plains. At its northern terminus, the NLLJ led to a zonal band of elevated conditionally unstable air where strong low-level ascent overcame small convective inhibition, triggering new convection in three preferred plains. An analysis of convective instability shows that the low-tropospheric intrusion of moist monsoon air generated CAPE of ~1000 J kg−1 prior to convection initiation, whereas free-atmospheric forcing was much weaker. The NLLJ-related horizontal advection accounted for most of the instability precondition at 100–175 J kg−1 h−1. At the convective stage, instability generation by the upward transport of moisture increased to ~100 J kg−1 h−1, suggesting that ascending inflow caused feedback in convection growth. The convection dissipated in late morning with decaying NLLJ and moisture at elevated layers. It is concluded that the diurnally varying summer monsoon acted as an effective discharge of available moist energy from southern to central China, generating the morning-peak heavy rainfall corridor.

Full access
Sai Wang, Debashis Nath, Wen Chen, and Lin Wang

Abstract

In the last three decades, rapid surface warming is observed in the land areas of northern high latitudes during boreal summer months. Although the warming trend is thought to be driven by early snowmelt, the exact causes, especially its relationship with atmospheric circulation changes, remain a subject of debate. By analyzing ERA-Interim data, this study examines the possible factors for rapid subarctic warming. It is found that more than half of the warming trend over the entire subarctic and 80% over northern Canada and eastern Siberia (regions with maximum amplification) can be explained by enhanced downward infrared radiation (IR). Downward IR is largely driven by horizontal atmospheric moisture flux convergence and warm-air advection. The positive trend in geopotential height over the Greenland region is key for moisture flux convergence over northern Canada and eastern Siberia through changes in the storm tracks. An enhanced summertime blocking activity in the Greenland region seems responsible for the positive trend in geopotential heights.

Full access
Long Wen, Kun Zhao, Guifu Zhang, Su Liu, and Gang Chen

Abstract

Instrumentation limitations on measured raindrop size distributions (DSDs) and their derived relations and physical parameters are studied through a comparison of the DSD measurements during mei-yu season in east China by four collocated instruments, that is, a two-dimensional video disdrometer (2DVD), a vertically pointing Micro Rain Radar (MRR), and two laser-optical OTT Particle Size Velocity (PARSIVEL) disdrometers (first generation: OTT-1; second generation: OTT-2). Among the four instruments, the 2DVD provides the most accurate DSD and drop velocity measurements, so its measured rainfall amount has the best agreement with the reference rain gauge. Other instruments tend to miss more small drops (D < 1 mm), leading to inaccurate DSDs and a lower rainfall amount. The low rainfall estimation becomes significant during heavy rainfall. The impacts of instrument limitations on the microphysical processes (e.g., evaporation and accretion rates) and convective storm morphology are evaluated. This is important especially for mei-yu precipitation, which is dominated by a high concentration of small drops. Hence, the instrument limitations need to be taken into account in both QPE and microphysics parameterization.

Full access
Jun Li, Yi-Leng Chen, and Wen-Chau Lee

Abstract

A heavy rainfall event during the Taiwan Area Mesoscale Experiment intensive observing period 13 has been studied using upper-air, surface mesonet, and dual-Doppler radar data. The heavy rainfall (≥231 mm day−1) occurred over northwestern Taiwan with the maximum rainfall along the northwestern coast and was caused by a long-lived, convective rainband in the prefrontal atmosphere. It occurred in an upper-level divergence region and along the axis of the maximum equivalent potential temperature at the 850-hPa level.

As a Mei-Yu front advanced southeastward, the postfrontal cold air in the lowest levels was retarded by the hilly terrain along the southeastern China coast. As a result, a low-level wind-shift line associated with a pressure trough at the 850-hPa level moved over the Taiwan Strait before the arrival of the surface front. The westerly flow behind the trough interacted with a barrier jet along the northwestern coast of Taiwan. The barrier jet is caused by the interaction between the prefrontal southwest monsoon flow and the island obstacle. A low-level convergence zone (∼3 km deep) was observed along the wind-shift line between the westerly flow coming off the southeastern China coast and the barrier jet. A long-lived rainband developed within the low-level convergence zone and moved southeastward toward the northwestern Taiwan coast with the wind-shift line.

There were several long-lived (>2 h) reflectivity maxima embedded in the rainband. They often had several individual cells with a much shorter lifetime. The reflectivity maxima formed on the southwestern tip of the rainband and along the low-level wind-shift line. They intensified during their movement from the southwest to the northeast along the rainband. The continuous generation of the reflectivity maxima along the wind-shift line and the intensification of them over the low-level convergence zone maintained the long lifetime of the rainband and produced persistent heavy rainfall along the northwestern coast as these reflectivity maxima moved toward the coast. During the early stage of their lifetime, the reflectivity maxima were observed along the wind-shift line with upward motion in the lower troposphere. As they moved toward the northeastern part of the rainband and matured, the reflectivity maxima were observed southeast of the convergence zone with sinking motion in the lower troposphere. The upward motion was rooted along the wind-shift line and tilted southeastward with height. The reflectivity maxima dissipated as they moved inland. During the early stage of the rainband, the reflectivity maxima on the northeastern part of the rainband also merged with the convective line associated with the land-breeze front offshore of the northwestern coast.

The Mei-Yu front was shallow (<1 km) and moved slowly southward along the western coast. Convection associated with the front was weak with echo tops (∼10 dBZ) below 6 km.

Full access
Lin Wang, Ronghui Huang, Lei Gu, Wen Chen, and Lihua Kang

Abstract

Interdecadal variations of the East Asian winter monsoon (EAWM) and their association with the quasi-stationary planetary wave activity are analyzed by using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset and the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. It is found that the EAWM experienced a significant weakening around the late 1980s; that is, the EAWM was strong during 1976–87 and became weak after 1988. This leads to an obvious increase in the wintertime surface air temperature as well as a decrease in the frequency of occurrence of cold waves over East Asia. The dynamical process through which the EAWM is weakened is investigated from the perspective of quasi-stationary planetary waves. It is found that both the propagation and amplitude of quasi-stationary planetary waves have experienced obvious interdecadal variations, which are well related to those of the EAWM. Compared to the period 1976–87, the horizontal propagation of quasi-stationary planetary waves after 1988 is enhanced along the low-latitude waveguide in the troposphere, and the upward propagation of waves into the stratosphere is reduced along the polar waveguide. This results in a weakened subtropical jet around 40°N due to the convergence of the Eliassen–Palm flux. The East Asian jet stream is then weakened, leading to the weakening of the EAWM since 1988. In addition, the amplitude of quasi-stationary planetary waves is significantly weakened around 45°N, which is related to the reduced upward propagation of waves from the lower boundary after 1988. This reduced amplitude may weaken both the Siberian high and the Aleutian low, reduce the pressure gradient in between, and then weaken the EAWM. Further analyses indicate that zonal wavenumber 2 plays the dominant role in this process.

Full access
Yuanyuan Guo, Zhiping Wen, Renguang Wu, Riyu Lu, and Zesheng Chen

Abstract

The leading mode of boreal winter precipitation variability over the tropical Pacific for the period 1980–2010 shows a west–east dipole pattern with one center over the western North Pacific (WNP) and Maritime Continent and the other center over the equatorial central Pacific (CP). Observational evidence shows that the variability of the East Asian upper-tropospheric subtropical westerly jet (EAJ) has a significant correlation with precipitation anomalies over the WNP and CP and that tropical precipitation anomalies over WNP and CP have a distinct influence on the variation of the EAJ. A series of numerical experiments based on a linear baroclinic model are performed to confirm the influence of the heating anomalies associated with precipitation perturbations over the WNP and CP on the EAJ. The results of numerical experiments indicate that a heat source over the WNP can excite a northward-propagating Rossby wave train in the upper troposphere over East Asia and facilitate a poleward eddy momentum flux. It results in the acceleration of the westerlies between 30° and 45°N, which favors a northward displacement of the EAJ. The response induced by a heat sink over the CP features a zonal easterly band between 25° and 40°N, suggesting that the response to heat sink associated with negative precipitation anomalies over the CP may weaken the EAJ. A strengthened relationship was found between tropical Pacific precipitation and the EAJ since 1979. The modeling results suggest that the shift of mean states might be responsible for the strengthened EAJ–rainfall relationship after 1979.

Full access