Search Results

You are looking at 31 - 40 of 42 items for

  • Author or Editor: Yang Lu x
  • All content x
Clear All Modify Search
Jun Yang, Weitao Lyu, Ying Ma, Yijun Zhang, Qingyong Li, Wen Yao, and Tianshu Lu

Abstract

The macroscopic characteristics of clouds in the Tibetan Plateau are crucial to understanding the local climatic conditions and their impact on the global climate and water vapor cycle. In this study, the variations of cloud cover and cloud types are analyzed by using total-sky images of two consecutive years in Shigatse, Tibetan Plateau. The results show that the cloud cover in Shigatse presents a distinct seasonal difference that is characterized by low cloud cover in autumn and winter and high cloud cover in summer and spring. July is the month with the largest cloud coverage, and its average cloud cover exceeds 75%. The probability of clouds in the sky is the lowest in November, with an average cloud cover of less than 20%. The diurnal variations of cloud cover in different months also have considerable differences. Specifically, cloud cover is higher in the afternoon than that in the morning in most months, whereas the cloud cover throughout the day varies little from July to September. The dominant cloud types in different months are also not the same. The proportion of clear sky is large in autumn and winter. Stratiform cloud occupies the highest percentage in March, April, July, and August. The probability of emergence of cirrus is highest in May and June. The Shigatse region has clear rainy and dry seasons, and correlation analysis between precipitation and clouds shows that the largest cumulative precipitation, the highest cloud cover, and the highest proportion of stratiform clouds occur simultaneously in July.

Full access
Luwen Chen, Yijun Zhang, Weitao Lu, Dong Zheng, Yang Zhang, Shaodong Chen, and Zhihui Huang

Abstract

Performance evaluation for the lightning location system (LLS) of the power grid in Guangdong Province, China, was conducted based on observation data of the triggered lightning flashes obtained in Conghua, Guangzhou, during 2007–11 and natural lightning flashes to tall structures obtained in Guangzhou during 2009–11. The results show that the flash detection efficiency and stroke detection efficiency were about 94% (58/62) and 60% (97/162), respectively. The arithmetic mean and median values for location error were estimated to be about 710 and 489 m, respectively, when more than two reporting sensors were involved in the location retrieval (based on 87 samples). After eliminating one obviously abnormal sample, the absolute percentage errors of peak current estimation were within 0.4%–42%, with arithmetic mean and median values of about 16.3% and 19.1%, respectively (based on 21 samples).

Full access
Jian Lu, Koichi Sakaguchi, Qing Yang, L. Ruby Leung, Gang Chen, Chun Zhao, Erik Swenson, and Zhangshuan J. Hou

Abstract

Building on the recent advent of the concept of finite-amplitude wave activity, a contour-following diagnostics for column water vapor (CWV) is developed and applied to a pair of aquaplanet model simulations to understand and quantify the higher moments in the global hydrological cycle. The Lagrangian nature of the diagnostics leads to a more tractable formalism for the transient, zonally asymmetric component of the hydrological cycle, with a strong linear relation emerging between the wave activity and the wave component of precipitation minus evaporation (). The dry-versus-wet disparity in the transient hydrological cycle is measured by , and it is found to increase at a super-Clausius–Clapeyron rate at the poleward side of the mean storm track in response to a uniform sea surface temperature (SST) warming and the meridional structure of the increase can be largely attributed to the change of the meridional stirring scale of the midlatitude Rossby waves. Further scaling for indicates that the rate of the wavy hydrological cycle, measured by the ratio of to the CWV wave activity, is subdued almost everywhere in the extratropics, implying an overall weakening of the transient circulation. Extending the CWV wave activity analysis to the transient moist regions helps reveal some unique characteristics of atmospheric rivers in terms of transport function, minimum precipitation efficiency, and maximum hydrological cycle rate, as well as an overall weakening of the hydrological cycle rate in the atmospheric river regions under SST warming.

Full access
Yiquan Jiang, Xiu-Qun Yang, Xiaohong Liu, Yun Qian, Kai Zhang, Minghuai Wang, Fang Li, Yong Wang, and Zheng Lu

Abstract

Aerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, the Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasis on the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be −0.78 ± 0.29 W m−2, which is mostly from shortwave RE due to aerosol–cloud interactions (REaci; −0.70 ± 0.20 W m−2). The associated global annual-mean surface air temperature (SAT) change ∆T is −0.64 ± 0.16 K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to reamplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N) but increases in the Southern Hemisphere tropical ocean, which is associated with the southward shift of the intertropical convergence zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal forest fire aerosol indirect effects, through intensifying the cross-equator atmospheric heat transport.

Open access
Yan Wang, Kun Yang, Zhengyang Pan, Jun Qin, Deliang Chen, Changgui Lin, Yingying Chen, Lazhu, Wenjun Tang, Menglei Han, Ning Lu, and Hui Wu

Abstract

The southern Tibetan Plateau (STP) is the region in which water vapor passes from South Asia into the Tibetan Plateau (TP). The accuracy of precipitable water vapor (PWV) modeling for this region depends strongly on the quality of the available estimates of water vapor advection and the parameterization of land evaporation models. While climate simulation is frequently improved by assimilating relevant satellite and reanalysis products, this requires an understanding of the accuracy of these products. In this study, PWV data from MODIS infrared and near-infrared measurements, AIRS Level-2 and Level-3, MERRA, ERA-Interim, JRA-55, and NCEP final reanalysis (NCEP-Final) are evaluated against ground-based GPS measurements at nine stations over the STP, which covers the summer monsoon season from 2007 to 2013. The MODIS infrared product is shown to underestimate water vapor levels by more than 20% (1.84 mm), while the MODIS near-infrared product overestimates them by over 40% (3.52 mm). The AIRS PWV product appears to be most useful for constructing high-resolution and high-quality PWV datasets over the TP; particularly the AIRS Level-2 product has a relatively low bias (0.48 mm) and RMSE (1.83 mm) and correlates strongly with the GPS measurements (R = 0.90). The four reanalysis datasets exhibit similar performance in terms of their correlation coefficients (R = 0.87–0.90), bias (0.72–1.49 mm), and RMSE (2.19–2.35 mm). The key finding is that all the reanalyses have positive biases along the PWV seasonal cycle, which is linked to the well-known wet bias over the TP of current climate models.

Full access
Wenli Wang, Kun Yang, Long Zhao, Ziyan Zheng, Hui Lu, Ali Mamtimin, Baohong Ding, Xin Li, Lin Zhao, Hongyi Li, Tao Che, and John C. Moore

Abstract

Snow depth on the interior of Tibetan Plateau (TP) in state-of-the-art reanalysis products is almost an order of magnitude higher than observed. This huge bias stems primarily from excessive snowfall, but inappropriate process representation of shallow snow also causes excessive snow depth and snow cover. This study investigated the issue with respect to the parameterization of fresh snow albedo. The characteristics of TP snowfall were investigated using ground truth data. Snow in the interior of the TP is usually only some centimeters in depth. The albedo of fresh snow depends on snow depth, and is frequently less than 0.4. Such low albedo values contrast with the high values (~0.8) used in the existing snow schemes of land surface models. The SNICAR radiative transfer model can reproduce the observations that fresh shallow snow has a low albedo value, based on which a fresh snow albedo scheme was derived in this study. Finally, the impact of the fresh snow albedo on snow ablation was examined at 45 meteorological stations on TP using the land surface model Noah-MP which incorporated the new scheme. Allowing albedo to change with snow depth can produce quite realistic snow depths compared with observations. In contrast, the typically assumed fresh snow albedo of 0.82 leads to too large snow depths in the snow ablation period averaged across 45 stations. The shallow snow transparency impact on snow ablation is therefore particularly important in the TP interior, where snow is rather thin and radiation is strong.

Free access
Koichi Sakaguchi, L. Ruby Leung, Chun Zhao, Qing Yang, Jian Lu, Samson Hagos, Sara A. Rauscher, Li Dong, Todd D. Ringler, and Peter H. Lauritzen

Abstract

This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.

Full access
Fan Yang, Qing He, Jianping Huang, Mamtimin Ali, Xinghua Yang, Wen Huo, Chenglong Zhou, Xinchun Liu, Wenshou Wei, Caixia Cui, Minzhong Wang, Hongjun Li, Lianmei Yang, Hongsheng Zhang, Yuzhi Liu, Xinqian Zheng, Honglin Pan, Lili Jin, Han Zou, Libo Zhou, Yongqiang Liu, Jiantao Zhang, Lu Meng, Yu Wang, Xiaolin Qin, Yongjun Yao, Houyong Liu, Fumin Xue, and Wei Zheng

CAPSULE

The Desert Environment and Climate Observation Network (DECON) could promote collaborative research on desert dust-storms, boundary-layer and land-atmosphere interactions to better understand the status and role of the Taklimakan desert.

Full access
Hanqin Tian, Jia Yang, Chaoqun Lu, Rongting Xu, Josep G. Canadell, Robert B. Jackson, Almut Arneth, Jinfeng Chang, Guangsheng Chen, Philippe Ciais, Stefan Gerber, Akihiko Ito, Yuanyuan Huang, Fortunat Joos, Sebastian Lienert, Palmira Messina, Stefan Olin, Shufen Pan, Changhui Peng, Eri Saikawa, Rona L. Thompson, Nicolas Vuichard, Wilfried Winiwarter, Sönke Zaehle, Bowen Zhang, Kerou Zhang, and Qiuan Zhu

Abstract

Nitrous oxide (N2O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N2O fluxes and the key drivers of N2O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N2O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N2O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N2O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N2O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N2O dynamics; and 3) provide a benchmarking estimate of N2O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N2O estimation derived from the NMIP is a key component of the global N2O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.

Open access
Jinyuan Xin, Yuesi Wang, Yuepeng Pan, Dongsheng Ji, Zirui Liu, Tianxue Wen, Yinghong Wang, Xingru Li, Yang Sun, Jie Sun, Pucai Wang, Gehui Wang, Xinming Wang, Zhiyuan Cong, Tao Song, Bo Hu, Lili Wang, Guiqian Tang, Wenkang Gao, Yuhong Guo, Hongyan Miao, Shili Tian, and Lu Wang

Abstract

Based on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on Atmospheric Aerosol Research network of China (CARE-China) was recently established as the country’s first monitoring network for the study of the spatiotemporal distribution of aerosol physical characteristics, chemical components, and optical properties, as well as aerosol gaseous precursors. The network comprises 36 stations in total and adopts a unified approach in terms of the instrumentation, experimental standards, and data specifications. This ongoing project is intended to provide an integrated research platform to monitor online PM2.5 concentrations, nine-size aerosol concentrations and chemical component distributions, nine-size secondary organic aerosol (SOA) component distributions, gaseous precursor concentrations (including SO2, NOx, CO, O3, and VOCs), and aerosol optical properties. The data will be used to identify the sources of regional aerosols, the relative contributions from nature and anthropogenic emissions, the formation of secondary aerosols, and the effects of aerosol component distributions on aerosol optical properties. The results will reduce the levels of uncertainty involved in the quantitative assessment of aerosol effects on regional climate and environmental changes and ultimately provide insight into how to mitigate anthropogenic aerosol emissions in China. The present paper provides a detailed description of the instrumentation, methodologies, and experimental procedures used across the network, as well as a case study of observations taken from one station and the distribution of main components of aerosol over China during 2012.

Full access