Search Results

You are looking at 31 - 40 of 55 items for

  • Author or Editor: Yuan Wang x
  • All content x
Clear All Modify Search
Tempei Hashino, Kai-Yuan Cheng, Chih-Che Chueh, and Pao K. Wang

Abstract

Understanding of the flow field and falling patterns of ice crystals is fundamental to cloud physics and radiative transfer, and yet the complex shape hampers a comprehensive understanding. In order to create better understanding of falling patterns of columnar crystals, this study utilizes a computational fluid dynamics package and explicitly simulates the motion as well as the flow fields. Three modes of patterns (i.e., strong damping, fluttering, and unstable modes) were identified in the space of inverse aspect ratio (q) and Reynolds number (Re). The boundary of stability depicts the “L” shape as found in a previous experimental study. This study newly found that the range of Re for stable motion increases with a decrease in q. Decomposition of hydrodynamic torques indicates that, for stable mode, the pressure and viscous torques acting on the lower prism faces counteract the rotation when the inclination angle becomes 0°. The unstable motion was attributed to the pressure torque acting on the upper prism faces, which is associated with eddies that lag behind the oscillating boundary. Observed Re–q relationships of columns suggest that the strong damping mode is most likely to occur in the atmosphere, but the fluttering mode is also possible. Furthermore, the time scales of oscillation and damping were parameterized as a function of q and Re. The impact of the fluttering on the riming process is limited at the beginning, which supports the current formulation in numerical weather and climate models.

Full access
Zhiwei Heng, Yunfei Fu, Guosheng Liu, Renjun Zhou, Yu Wang, Renmin Yuan, Jingchao Guo, and Xue Dong

Abstract

In this paper, the global distribution of cloud water based on International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), CloudSat Cloud Profiling Radar (CPR), European Center for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim), and Climate Forecast System Reanalysis (CFSR) datasets is presented, and the variability of cloud water from ISCCP, the Special Sensor Microwave Imager (SSM/I), ERA-Interim, and CFSR data over the time period of 1995 through 2009 is discussed. The results show noticeable differences in cloud water over land and over ocean, as well as latitudinal variations. Large values of cloud water are mainly distributed over the North Pacific and Atlantic Oceans, eastern ITCZ, regions off the west coast of the continents as well as tropical rain forest. Cloud water path (CWP), liquid water path (LWP), and ice water path (IWP) from these datasets show a relatively good agreement in distributions and zonal means. The results of trend analyzing show an increasing trend in CWP, and also a significant increasing trend of LWP can be found in the dataset of ISCCP, ERA-Interim, and CFSR over the ocean. Besides the long-term variation trend, rises of cloud water are found when temperature and water vapor exhibit a positive anomaly. EOF analyses are also applied to the anomalies of cloud water, the first dominate mode of CWP and IWP are similar, and a phase change can be found in the LWP time coefficient around 1999 in ISCCP and CFSR and around 2002 in ERA-Interim.

Full access
Dan-Qing Huang, Jian Zhu, Yao-Cun Zhang, Jun Wang, and Xue-Yuan Kuang

Abstract

Spring persistent rainfall (SPR) over southern China has great impact on its society and economics. A remarkable feature of the SPR is high frequency. However, SPR frequency obviously decreases over the period of 1997–2011. In this study, the possible causes have been investigated from the perspective of the individual and concurrent effects of the East Asian subtropical jet (EASJ) and East Asian polar front jet (EAPJ). A close relationship is detected between SPR frequency and EASJ intensity (but not EAPJ intensity). Associated with strong EASJ, abundant water vapor is transported to southern China by the southwesterly flow, which may trigger the SPR. Additionally, frequencies of both strong EASJ and weak EAPJ events are positively correlated with SPR frequency. Further investigation of the concurrent effect indicates a significant positive correlation between the frequencies of SPR and the strong EASJ–weak EAPJ configuration. Associated with this configuration, southwesterly flow strengthens in the lower troposphere, while northerly wind weakens in the upper troposphere. This provides a dynamic and moist condition, as enhanced ascending motion and intensified convergence of abundant water vapor over southern China, which favors the SPR. All analyses suggest that the EASJ may play a dominant role in the SPR occurrence and that the EAPJ may play a modulation role. Finally, a possible mechanism maintaining the strong EASJ–weak EAPJ configuration is proposed. Significant cooling over the northeastern Tibetan Plateau may induce a cyclone anomaly in the upper troposphere, which could result in an accelerating EASJ and a decelerating EAPJ.

Full access
Hua Li, Ke Fan, Shengping He, Yong Liu, Xing Yuan, and Huijun Wang

Abstract

The reversal of surface air temperature anomalies (SATA) in winter brings a great challenge for short-term climate prediction, and the mechanisms are not well understood. This study found that the reversal of SATA between December and January over China could be demonstrated by the second leading mode of multivariate empirical orthogonal function analysis on the December–January SATA. It further reveals that the central Pacific El Niño–Southern Oscillation (CP ENSO) has contributed more influence on such a reversal of SATA since 1997. CP ENSO shows positive but weak correlations with SATA over China in both December and January during the pre-1996 period, whereas it shows significant negative and positive correlations with the SATA in December and January, respectively, during the post-1997 period. The CP ENSO–related circulations suggest that the change of the Siberian high has played an essential role in the reversal of SATA since 1997. The pattern of sea surface temperature anomalies associated with the CP ENSO leads to a westward-replaced Walker circulation that alters the local meridional circulation and, further, has impacted the Siberian high and SATA over China since 1997. Moreover, the seasonal northward march of the convergence zone from December to January causes a northward-replaced west branch of the Walker circulation in January compared with that in December. The west branch of the Walker circulation in December and January directly modulates local Hadley and Ferrel circulations and then causes contrasting Siberian high anomalies by inducing opposite vertical motion anomalies over Siberia. The reversal of SATA between December and January, therefore, has been more frequently observed over China since 1997. The abovementioned mechanisms are validated by the analysis at pentad time scales and confirmed by numerical simulations.

Restricted access
Yuan-Chien Lin, Wen-Hsin Wang, Chun-Yeh Lai, and Yong-Qing Lin

Abstract

Heavy rainfall and strong wind are the two main sources of disasters that are caused by tropical cyclones (TCs), and typhoons with different characteristics may induce different agricultural losses. Traditionally, the classification of typhoon intensity has not considered the amount of rainfall. Here, we propose a novel approach to calculate the typhoon type index (TTI). A positive TTI represents a “wind type” typhoon, where the overall damage in a certain area from TCs is dominated by strong wind. On the other hand, a negative TTI represents a “rain type” typhoon, where the overall damage in a certain area from TCs is dominated by heavy rainfall. From the TTI, the vulnerability of crop losses from different types of typhoons can be compared and explored. For example, Typhoon Kalmaegi (2008) was classified as a rain-type typhoon (TTI = −1.22). The most affected crops were oriental melons and leafy vegetables. On the contrary, Typhoon Soudelor (2015) was classified as a significant wind-type typhoon in most of Taiwan (TTI = 1.83), and the damaged crops were mainly bananas, bamboo shoots, pomelos, and other crops that are easily blown off by strong winds. Through the method that is proposed in this study, we can understand the characteristics of each typhoon that deviate from the general situation and explore the damages that are mainly caused by strong winds or heavy rainfall at different locations. This approach can provide very useful information that is important for the disaster analysis of different agricultural products.

Open access
Xin Xu, Ming Xue, Miguel A. C. Teixeira, Jianping Tang, and Yuan Wang

Abstract

In this work, a new parameterization scheme is developed to account for the directional absorption of orographic gravity waves (OGWs) using elliptical mountain-wave theory. The vertical momentum transport of OGWs is addressed separately for waves with different orientations through decomposition of the total wave momentum flux (WMF) into individual wave components. With the new scheme implemented in the Weather Research and Forecasting (WRF) Model, the impact of directional absorption of OGWs on the general circulation in boreal winter is studied for the first time. The results show that directional absorption can change the vertical distribution of OGW forcing, while maintaining the total column-integrated forcing. In general, directional absorption inhibits wave breaking in the lower troposphere, producing weaker orographic gravity wave drag (OGWD) there and transporting more WMF upward. This is because directional absorption can stabilize OGWs by reducing the local wave amplitude. Owing to the increased WMF from below, the OGWD in the upper troposphere at midlatitudes is enhanced. However, in the stratosphere of mid- to high latitudes, the OGWD is still weakened due to greater directional absorption occurring there. Changes in the distribution of midlatitude OGW forcing are found to weaken the tropospheric jet locally and enhance the stratospheric polar night jet remotely. The latter occurs as the adiabatic warming (associated with the OGW-induced residual circulation) is increased at midlatitudes and suppressed at high latitudes, giving rise to stronger thermal contrast. Resolved waves are likely to contribute to the enhancement of polar stratospheric winds as well, because their upward propagation into the high-latitude stratosphere is suppressed.

Free access
Rui Wang, Yunfei Fu, Tao Xian, Fengjiao Chen, Renmin Yuan, Rui Li, and Guosheng Liu

Abstract

Variations and trends of atmospheric precipitable water (APW) are examined using radiosonde data from Integrated Global Radiosonde Archive (IGRA) and China Meteorological Administration (CMA) from 1995 to 2012 in mainland China. The spatial distribution of the climatological mean APW shows that APW gradually decreases from the southern to the northern regions of mainland China. The seasonal mean pattern of APW shows clear regional difference, except for higher APW in summer (June–August) and lower APW in winter (December–February). Four regions show significantly downward trends in APW. Moreover, the trends of APW calculated using reanalysis datasets are consistent with the results of radiosonde data. Furthermore, the relationship between APW and the general circulation is investigated. The summer East Asian monsoon intensity and El Niño events show positive correlations with APW, whereas the North Atlantic Oscillation shows negative correlation with APW. The downward trend of APW is in accordance with the downward trend of mean column temperature (1000–300 hPa) at most stations, which suggests that decreasing mean column temperature results in decreasing APW in mainland China. Additionally, statistical analysis has revealed the regional trends in APW are not consistent with the regional trends in precipitation, implying that not all the variation of precipitation can be explained by APW.

Open access
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Yangang Liu, and Renyi Zhang

Abstract

A continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudiness for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. The results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.

Full access
Peng Ji, Xing Yuan, Yang Jiao, Chunqing Wang, Shuai Han, and Chunxiang Shi
Free access
Jie Tang, David Byrne, Jun A. Zhang, Yuan Wang, Xiao-tu Lei, Dan Wu, Ping-zhi Fang, and Bing-ke Zhao

Abstract

Tropical cyclones (TC) consist of a large range of interacting scales from hundreds of kilometers to a few meters. The energy transportation among these different scales—that is, from smaller to larger scales (upscale) or vice versa (downscale)—may have profound impacts on TC energy dynamics as a result of the associated changes in available energy sources and sinks. From multilayer tower measurements in the low-level (<120 m) boundary layer of several landing TCs, the authors found there are two distinct regions where the energy flux changes from upscale to downscale as a function of distance to the storm center. The boundary between these two regions is approximately 1.5 times the radius of maximum wind. Two-dimensional turbulence (upscale cascade) occurs more typically at regions close to the inner-core region of TCs, while 3D turbulence (downscale cascade) mostly occurs at the outer-core region in the surface layer.

Full access