Search Results

You are looking at 41 - 50 of 60 items for

  • Author or Editor: Siegfried D. Schubert x
  • All content x
Clear All Modify Search
Siegfried D. Schubert, Max J. Suarez, Philip J. Pegion, Michael A. Kistler, and Arun Kumar

Abstract

This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June–July–August (JJA) simulations (started in mid-May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs) and sea ice for the years 1980–99. It is found that the predictability of the JJA extratropical height field is primarily in the zonal-mean component of the response to the SST anomalies. This contrasts with the cold season (January–February–March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Niño–Southern Oscillation (ENSO) response.

Two patterns dominate the interannual variability of the ensemble mean JJA zonal-mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in the midlatitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis shows that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the midlatitude pattern is associated with SST anomalies in the tropical Pacific just east of the date line. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the midlatitude pattern that is consistent with the occurrence of dry and wet summers over the United States. It is hypothesized that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.

Full access
Man-Li C. Wu, Siegfried D. Schubert, Max J. Suarez, and Norden E. Huang

Abstract

This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980–2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3–8 day) time scales, the Madden–Julian oscillation (MJO) at intraseasonal time scales (20–90 day), and intermediate (10–15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea–western Atlantic Ocean.

In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10–15 day) time-scale systems have zonal wavelengths roughly twice that of the easterly waves, and their initiation appears to be linked to an extratropical U.S. East Coast ridge and associated northeasterly winds that extend well into the Caribbean Sea during their development phase. The short (3–8 day) and, to a lesser extent, the intermediate (10–15 day) time-scale fluxes tend to be enhanced when the convectively active phase of the MJO is situated over the Americas.

Full access
Young-Kwon Lim, Siegfried D. Schubert, Yehui Chang, Andrea M. Molod, and Steven Pawson

Abstract

The factors impacting western U.S. winter precipitation during the 2015/16 El Niño are investigated using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), data, and simulations with the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model forced with specified sea surface temperatures (SSTs). Results reveal that the simulated response to the tropical Pacific SST associated with the 2015/16 El Niño was to produce wetter than normal conditions over much of the North American west coast including California—a result at odds with the negative precipitation anomalies observed over much of the southwestern United States. It is shown that two factors acted to partly counter the canonical ENSO response in that region. First, a potentially predictable but modest response to the unusually strong and persistent warm SST in the northeastern Pacific decreased precipitation in the southwestern United States by increasing sea level pressure, driving anticyclonic circulation and atmospheric descent, and reducing moisture transport into that region. Second, large-scale unforced (by SST) components of atmospheric variability (consisting of the leading modes of unpredictable intraensemble variability) resembling the positive phase of the North Atlantic Oscillation and Arctic Oscillation are found to be an important contributor to the drying over the western United States. While a statistical reconstruction of the precipitation from our simulations that account for internal atmospheric variability does much to close the gap between the ensemble-mean and observed precipitation in the southwestern United States, some differences remain, indicating that model error is also playing a role.

Full access
Christopher L. Castro, Roger A. Pielke Sr., Jimmy O. Adegoke, Siegfried D. Schubert, and Phillip J. Pegion

Abstract

Summer simulations over the contiguous United States and Mexico with the Regional Atmospheric Modeling System (RAMS) dynamically downscaling the NCEP–NCAR Reanalysis I for the period 1950–2002 (described in Part I of the study) are evaluated with respect to the three dominant modes of global SST. Two of these modes are associated with the statistically significant, naturally occurring interannual and interdecadal variability in the Pacific. The remaining mode corresponds to the recent warming of tropical sea surface temperatures. Time-evolving teleconnections associated with Pacific SSTs delay or accelerate the evolution of the North American monsoon. At the period of maximum teleconnectivity in late June and early July, there is an opposite relationship between precipitation in the core monsoon region and the central United States. Use of a regional climate model (RCM) is essential to capture this variability because of its representation of the diurnal cycle of convective rainfall. The RCM also captures the observed long-term changes in Mexican summer rainfall and suggests that these changes are due in part to the recent increase in eastern Pacific SST off the Mexican coast. To establish the physical linkage to remote SST forcing, additional RAMS seasonal weather prediction mode simulations were performed and these results are briefly discussed. In order for RCMs to be successful in a seasonal weather prediction mode for the summer season, it is required that the GCM provide a reasonable representation of the teleconnections and have a climatology that is comparable to a global atmospheric reanalysis.

Full access
Man-Li C. Wu, Oreste Reale, Siegfried D. Schubert, Max J. Suarez, Randy D. Koster, and Philip J. Pegion

Abstract

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical Africa.

A state-of-the-art global model in a high-end computer framework is used to produce a three-member 73-yr ensemble run forced by observed SST to represent the control run. The AEJ as produced by the control is compared with the representation of the AEJ in the 40-yr ECMWF Re-Analysis (ERA-40) and other observational datasets and found to be very realistic.

Five experiments are then performed, each represented by sets of three-member 22-yr-long (1980–2001) ensemble runs. The goal of the experiments is to investigate the role of meridional soil moisture gradients, different land surface properties, and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated land surface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients but a unique combination of geographical features present only in northern tropical Africa that causes and maintains the jet.

Full access
Young-Kwon Lim, Siegfried D. Schubert, Oreste Reale, Andrea M. Molod, Max J. Suarez, and Benjamin M. Auer

Abstract

Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally constrained simulations with the NASA Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model. The climate modes investigated are El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic meridional mode (AMM).

The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic) led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes and not just to ENSO alone. Examination of seasonal predictability reveals that the predictive skill of the three modes is limited over tropics to subtropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

Full access
Young-Kwon Lim, Siegfried D. Schubert, Oreste Reale, Myong-In Lee, Andrea M. Molod, and Max J. Suarez

Abstract

The sensitivity of tropical cyclones (TCs) to changes in parameterized convection is investigated to improve the simulation of TCs in the North Atlantic. Specifically, the impact of reducing the influence of the Relaxed Arakawa–Schubert (RAS) scheme-based parameterized convection is explored using the Goddard Earth Observing System version 5 (GEOS-5) model at 0.25° horizontal grid spacing. The years 2005 and 2006, characterized by very active and inactive hurricane seasons, respectively, are selected for simulation.

A reduction in parameterized deep convection results in an increase in TC activity (e.g., TC number and longer life cycle) to more realistic levels compared to the baseline control configuration. The vertical and horizontal structure of the strongest simulated hurricane shows the maximum wind speed greater than 60 m s−1 and the minimum sea level pressure reaching ~940 mb, which are never achieved by the control configuration. The radius of the maximum wind of ~50 km, the location of the warm core exceeding 10°C, and the horizontal compactness of the hurricane center are all quite realistic without any negatively affecting the atmospheric mean state.

This study reveals that an increase in the threshold of minimum entrainment suppresses parameterized deep convection by entraining more dry air into the typical plume. This leads to cooling and drying at the mid to upper troposphere, along with the positive latent heat flux and moistening in the lower troposphere. The resulting increase in conditional instability provides an environment that is more conducive to TC vortex development and upward moisture flux convergence by dynamically resolved moist convection, thereby increasing TC activity.

Full access
Natalie P. Thomas, Michael G. Bosilovich, Allison B. Marquardt Collow, Randal D. Koster, Siegfried D. Schubert, Amin Dezfuli, and Sarith P. Mahanama

Abstract

Heat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980–2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

Restricted access
Eric F. Wood, Siegfried D. Schubert, Andrew W. Wood, Christa D. Peters-Lidard, Kingtse C. Mo, Annarita Mariotti, and Roger S. Pulwarty

Abstract

This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force (DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current understanding of North American drought and key research gaps. Results from the DTF papers indicate that key successes for drought monitoring include the application of modern land surface hydrological models that can be used for objective drought analysis, including extended retrospective forcing datasets to support hydrologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in the papers include the development of the North American Multimodel Ensemble (NMME) suite of seasonal model forecasts, an established basis for the importance of La Niña in drought events over the southern Great Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite such progress, there are still important limitations in our ability to predict various aspects of drought, including onset, duration, severity, and recovery. Critical challenges include (i) the development of objective, science-based integration approaches for merging multiple information sources; (ii) long, consistent hydrometeorological records to better characterize drought; and (iii) extending skillful precipitation forecasts beyond a 1-month lead time.

Full access
Myong-In Lee, Siegfried D. Schubert, Max J. Suarez, Isaac M. Held, Ngar-Cheung Lau, Jeffrey J. Ploshay, Arun Kumar, Hyun-Kyung Kim, and Jae-Kyung E. Schemm

Abstract

The diurnal cycle of warm-season rainfall over the continental United States and northern Mexico is analyzed in three global atmospheric general circulation models (AGCMs) from NCEP, GFDL, and the NASA Global Modeling Assimilation Office (GMAO). The results for each model are based on an ensemble of five summer simulations forced with climatological sea surface temperatures.

Although the overall patterns of time-mean (summer) rainfall and low-level winds are reasonably well simulated, all three models exhibit substantial regional deficiencies that appear to be related to problems with the diurnal cycle. Especially prominent are the discrepancies in the diurnal cycle of precipitation over the eastern slopes of the Rocky Mountains and adjacent Great Plains, including the failure to adequately capture the observed nocturnal peak. Moreover, the observed late afternoon–early evening eastward propagation of convection from the mountains into the Great Plains is not adequately simulated, contributing to the deficiencies in the diurnal cycle in the Great Plains. In the southeast United States, the models show a general tendency to rain in the early afternoon—several hours earlier than observed. Over the North American monsoon region in the southwest United States and northern Mexico, the phase of the broad-scale diurnal convection appears to be reasonably well simulated, though the coarse resolution of the runs precludes the simulation of key regional phenomena.

All three models employ deep convection schemes that assume fundamentally the same buoyancy closure based on simplified versions of the Arakawa–Schubert scheme. Nevertheless, substantial differences between the models in the diurnal cycle of convection highlight the important differences in their implementations and interactions with the boundary layer scheme. An analysis of local diurnal variations of convective available potential energy (CAPE) shows an overall tendency for an afternoon peak—a feature well simulated by the models. The simulated diurnal cycle of rainfall is in phase with the local CAPE variation over the southeast United States and the Rocky Mountains where the local surface boundary forcing is important in regulating the diurnal cycle of convection. On the other hand, the simulated diurnal cycle of rainfall tends to be too strongly tied to CAPE over the Great Plains, where the observed precipitation and CAPE are out of phase, implying that free atmospheric large-scale forcing plays a more important role than surface heat fluxes in initiating or inhibiting convection.

Full access