Search Results

You are looking at 41 - 50 of 96 items for

  • Author or Editor: Wen Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Xiao Feng, Renguang Wu, Jiepeng Chen, and Zhiping Wen

Abstract

The present study investigates the year-to-year variations of September–October rainfall in Hainan, China, for the period 1965–2010. The dominant circulation anomalies feature a cyclone (an anticyclone) over the Indochina Peninsula and northern South China Sea, an anticyclone (a cyclone) over subtropical western North Pacific and lower-level convergence (divergence) over the Maritime Continent in the wet (dry) years. These circulation anomalies are responses to an east–west sea surface temperature (SST) anomaly pattern with negative (positive) SST anomalies in the equatorial central Pacific and positive (negative) SST anomalies around the Maritime Continent in the wet (dry) years. Although the SST anomaly pattern is similar (but with opposite anomaly), the SST signal in the equatorial central Pacific is more significant in the dry years than in the wet years. This difference indicates a larger case-to-case variability in the wet years than in the dry years. The large variability in the wet years is attributed to contributions of tropical cyclones (TCs) and intraseasonal oscillations (ISOs). There are more TCs impinging on Hainan and the TC tracks are closer to the island in the wet years than in the dry years. The rainfall shows large intraseasonal variations with periods of 10–20 and 30–60 days during September–October in the wet years. The 10–20-day ISO originates from the Maritime Continent, whereas the 30–60-day ISO develops over tropical Indian Ocean and propagates northeastward to northern South China Sea. In contrast, the ISO signal is much weaker in the dry years.

Full access
Jingliang Huangfu, Wen Chen, Ronghui Huang, and Juan Feng

Abstract

This paper investigates how La Niña Modoki modulates the impacts of the warm Indian Ocean basin mode (IOBM) on the boreal summer climate and the genesis of tropical cyclones (TCs) over the northwest Pacific (NWP). The results showed that the influence of the Indian Ocean sea surface temperature (SST) on TC genesis is the primary mechanism during the boreal summer, while La Niña Modoki exerts a secondary influence. However, although the summertime index of the IOBM shows a high negative correlation with the number of TCs generated over the NWP, warm IOBM events without La Niña Modoki have only limited influences on the boreal summertime circulations and TC genesis. The present study showed that when warm IOBM events and La Niña Modoki coexisted, the average location of TC genesis shifted westward, and the annual number of generated TCs substantially decreased. La Niña Modoki–related cold sea surface temperature anomalies over the central Pacific further suppressed convective activities over the eastern NWP compared with warm IOBM events without La Niña Modoki. Upper-level convergence and enlarged tropospheric vertical wind shears both contributed to the weakening of the low-level relative vorticity in the coupled cases, leading to a suppressed NWP monsoon trough. Additionally, together with the weaker moisture supply, the impacts of warm IOBM cases were significantly enhanced under the modulation of La Niña Modoki, leading to poorer TC genesis conditions over the eastern NWP. In addition, the energy conversion processes in the aforementioned modulation showed that joint cases will provide fewer initial disturbance seedlings for TC genesis. These results are useful for further understanding the role of warm IOBM cases in TC genesis over the NWP.

Full access
Mengyan Feng, Weihua Ai, Guanyu Chen, Wen Lu, and Shuo Ma

Abstract

One-dimensional synthetic aperture microwave radiometer (1D-SAMR) can provide remote sensing images at a higher spatial resolution than those from traditional real aperture microwave radiometers. As 1D-SAMR operates at multiple incidence angles, we proposed a multiple linear regression method to retrieve sea surface temperature at an incidence angle between 0° and 65°. Assuming that a 1D-SAMR operates at various frequencies (i.e., 6.9, 10.65, 18.7, 23.8 and 36.5 GHz), a radiation transmission forward model was developed to simulate the brightness temperature measured by the 1D-SAMR. The sensitivity of the five frequencies to sea surface temperature was examined, and we evaluated the reliability of the regression method proposed in this study. Furthermore, 11 schemes with various frequency combinations were applied to retrieve sea surface temperature. The results showed that the five-frequency combination scheme performed better than the other schemes. This study also found that the accuracy of retrieved sea surface temperature is dependent on incidence angles. Finally, we suggested that the incidence angle range of the 1D-SAMR is necessary to be 30°–60° based on the relationship between the accuracy of retrieved sea surface temperature and the incidence angles.

Restricted access
Sai Wang, Debashis Nath, Wen Chen, and Lin Wang

Abstract

In the last three decades, rapid surface warming is observed in the land areas of northern high latitudes during boreal summer months. Although the warming trend is thought to be driven by early snowmelt, the exact causes, especially its relationship with atmospheric circulation changes, remain a subject of debate. By analyzing ERA-Interim data, this study examines the possible factors for rapid subarctic warming. It is found that more than half of the warming trend over the entire subarctic and 80% over northern Canada and eastern Siberia (regions with maximum amplification) can be explained by enhanced downward infrared radiation (IR). Downward IR is largely driven by horizontal atmospheric moisture flux convergence and warm-air advection. The positive trend in geopotential height over the Greenland region is key for moisture flux convergence over northern Canada and eastern Siberia through changes in the storm tracks. An enhanced summertime blocking activity in the Greenland region seems responsible for the positive trend in geopotential heights.

Full access
Zhibo Li, Ying Sun, Tim Li, Wen Chen, and Yihui Ding

Abstract

The South Asian summer monsoon (SASM) is one of the most crucial climate components in boreal summer. The future potential changes in the SASM have great importance for climate change adaption and policy setting in this populous region. To understand the SASM changes and its link with the global warming of 1.5°C to 5°C above the preindustrial level, we investigate the changes in the SASM circulation and precipitation based on a large-ensemble simulation conducted with Canadian Earth System Model version 2 (CanESM2). With the global mean surface temperature (GMST) increase, the large-ensemble mean of SASM circulation is projected to weaken almost linearly while the precipitation and precipitable water to enhance quasi-linearly. A double anticyclone along the tropical Indian Ocean is a major anomalous circulation pattern for each additional degree of warming and is responsible for the weakening of the lower-level westerlies. The decreased upper-level land-sea thermal contrast (TCupper) is the main thermal driver for the weakening of the SASM circulation while the lower-level thermal contrast contributes little. The non-linearly decreased TCupper is mainly related to the temperature response to the increased CO2 forcing and convection induced latent heat release in the tropics. The increase in the SASM precipitation is mainly due to the quasi-linearly increased positive contribution of the thermodynamic component, while the dynamic component has a negative impact. Both horizontal moisture advection and moisture convergence contribute to the precipitation increase, and moisture convergence plays a dominant role. These results provide new insight that the SASM changes can be roughly scaled by the GMST changes.

Restricted access
Lin Wang, Peiqiang Xu, Wen Chen, and Yong Liu

Abstract

Based on several reanalysis and observational datasets, this study suggests that the Silk Road pattern (SRP), a major teleconnection pattern stretching across Eurasia in the boreal summer, shows clear interdecadal variations that explain approximately 50% of its total variance. The interdecadal SRP features a strong barotropic wave train along the Asian subtropical jet, resembling its interannual counterpart. Additionally, it features a second weak wave train over the northern part of Eurasia, leading to larger meridional scale than its interannual counterpart. The interdecadal SRP contributes approximately 40% of the summer surface air temperature’s variance with little uncertainty and 10%–20% of the summer precipitation’s variance with greater uncertainty over large domains of Eurasia. The interdecadal SRP shows two regime shifts in 1972 and 1997. The latter shift explains over 40% of the observed rainfall reduction over northeastern Asia and over 40% of the observed warming over eastern Europe, western Asia, and northeastern Asia, highlighting its importance to the recent decadal climate variations over Eurasia. The Atlantic multidecadal oscillation (AMO) does not show a significant linear relationship with the interdecadal SRP. However, the Monte Carlo bootstrapping resampling analysis suggests that the positive (negative) phases of the spring and summer AMO significantly facilitate the occurrence of negative (positive) phases of the interdecadal SRP, implying plausible prediction potentials for the interdecadal variations of the SRP. The reported results are insensitive to the long-term trends in datasets and thereby have little relevance to externally forced climate change.

Full access
Lin Wang, Ronghui Huang, Lei Gu, Wen Chen, and Lihua Kang

Abstract

Interdecadal variations of the East Asian winter monsoon (EAWM) and their association with the quasi-stationary planetary wave activity are analyzed by using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis dataset and the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. It is found that the EAWM experienced a significant weakening around the late 1980s; that is, the EAWM was strong during 1976–87 and became weak after 1988. This leads to an obvious increase in the wintertime surface air temperature as well as a decrease in the frequency of occurrence of cold waves over East Asia. The dynamical process through which the EAWM is weakened is investigated from the perspective of quasi-stationary planetary waves. It is found that both the propagation and amplitude of quasi-stationary planetary waves have experienced obvious interdecadal variations, which are well related to those of the EAWM. Compared to the period 1976–87, the horizontal propagation of quasi-stationary planetary waves after 1988 is enhanced along the low-latitude waveguide in the troposphere, and the upward propagation of waves into the stratosphere is reduced along the polar waveguide. This results in a weakened subtropical jet around 40°N due to the convergence of the Eliassen–Palm flux. The East Asian jet stream is then weakened, leading to the weakening of the EAWM since 1988. In addition, the amplitude of quasi-stationary planetary waves is significantly weakened around 45°N, which is related to the reduced upward propagation of waves from the lower boundary after 1988. This reduced amplitude may weaken both the Siberian high and the Aleutian low, reduce the pressure gradient in between, and then weaken the EAWM. Further analyses indicate that zonal wavenumber 2 plays the dominant role in this process.

Full access
Hainan Gong, Lin Wang, Wen Chen, and Debashis Nath

Abstract

The multidecadal fluctuations in the patterns and teleconnections of the winter mean Arctic Oscillation (AO) are investigated based on observational and reanalysis datasets. Results show that the Atlantic center of the AO pattern remains unchanged throughout the period 1920–2010, whereas the Pacific center of the AO is strong during 1920–59 and 1986–2010 and weak during 1960–85. Consequently, the link between the AO and the surface air temperature over western North America is strong during 1920–59 and 1986–2010 and weak during 1960–85. The time-varying Pacific center of the AO motivates a revisit to the nature of the AO from the perspective of decadal change. It reveals that the North Pacific mode (NPM) and North Atlantic Oscillation (NAO) are the inherent regional atmospheric modes over the North Pacific and North Atlantic, respectively. Their patterns over the North Pacific and North Atlantic remain stable and change little with time during 1920–2010. The Atlantic center of the AO always resembles the NAO over the North Atlantic, but the Pacific center of the AO only resembles the NPM over the North Pacific when the NPM–NAO coupling is strong. These results suggest that the AO seems to be fundamentally rooted in the variability over the North Atlantic and that the annular structure of the AO very likely arises from the coupling of the atmospheric modes between the North Pacific and North Atlantic.

Full access
Robert G. Lamb, Wen H. Chen, and John H. Seinfeld

Abstract

Numerico-empirical expressions for the particle displacement probability density function from which the mean concentration of material in turbulent fluid may be obtained are derived from the numerical planetary boundary layer model of Deardorff. These expressions are then used to compute profiles of the mean, cross-wind-integrated concentration of an inert pollutant issuing from a continuous point source below a stable layer. Profiles are derived for each of two conditions of atmospheric stability: zi/L=0 and –4.5, where zi is the inversion base height and L the Monin-Obukhov length. The resulting concentration profiles [referred to as the numerico-empirical (NE) profiles] are then used in two separate experiments designed to assess the adequacy of conventional atmospheric diffusion formulations.

First, the validity of the atmospheric diffusion equation is assessed by determining for each of the two stabilities cited above the profile of vertical eddy diffusivity that produces the closest fit of the mean concentration predicted by the atmospheric diffusion equation with the NE profiles.

Second, comparisons are made between the NE profiles and the corresponding concentration distributions predicted by the Gaussian plume formula with Pasquill-Gifford dispersion parameters, and the Gaussian puff equation with McElroy-Pooler travel-time-dependent dispersion parameters.

Full access
Guixing Chen, Weiming Sha, Toshiki Iwasaki, and Zhiping Wen

Abstract

Moist convection occurred repeatedly in the midnight-to-morning hours of 11–16 June 1998 and yielded excessive rainfall in a narrow latitudinal corridor over East Asia, causing severe flood. Numerical experiments and composite analyses of a 5-day period are performed to examine the mechanisms governing nocturnal convection. Both simulations and observations show that a train of MCSs concurrently developed along a quasi-stationary mei-yu front and coincided with the impact of a monsoon surge on a frontogenetic zone at night. This process was regulated primarily by a nocturnal low-level jet (NLLJ) in the southwesterly monsoon that formed over southern China and extended to central China. In particular, the NLLJ acted as a mechanism of moisture transport over the plains. At its northern terminus, the NLLJ led to a zonal band of elevated conditionally unstable air where strong low-level ascent overcame small convective inhibition, triggering new convection in three preferred plains. An analysis of convective instability shows that the low-tropospheric intrusion of moist monsoon air generated CAPE of ~1000 J kg−1 prior to convection initiation, whereas free-atmospheric forcing was much weaker. The NLLJ-related horizontal advection accounted for most of the instability precondition at 100–175 J kg−1 h−1. At the convective stage, instability generation by the upward transport of moisture increased to ~100 J kg−1 h−1, suggesting that ascending inflow caused feedback in convection growth. The convection dissipated in late morning with decaying NLLJ and moisture at elevated layers. It is concluded that the diurnally varying summer monsoon acted as an effective discharge of available moist energy from southern to central China, generating the morning-peak heavy rainfall corridor.

Full access