Search Results

You are looking at 41 - 50 of 55 items for

  • Author or Editor: Yuan Wang x
  • All content x
Clear All Modify Search
Dunxin Hu, Shijian Hu, Lixin Wu, Lei Li, Linlin Zhang, Xinyuan Diao, Zhaohui Chen, Yuanlong Li, Fan Wang, and Dongliang Yuan

Abstract

The Luzon Undercurrent (LUC) was discovered about 20 years ago by geostrophic calculation from conductivity–temperature–depth (CTD) data. But it was not directly measured until 2010. From November 2010 to July 2011, the LUC was first directly measured by acoustic Doppler current profiler (ADCP) from a subsurface mooring at 18.0°N, 122.7°E to the east of Luzon Island. A number of new features of the LUC were identified from the measurements of the current. Its depth covers a range from 400 m to deeper than 700 m. The observed maximum velocity of the LUC, centered at about 650 m, could exceed 27.5 cm s−1, four times stronger than the one derived from previous geostrophic calculation with hydrographic data. According to the time series available, the seasonality of the LUC strength is in winter > summer > spring. Significant intraseasonal variability (ISV; 70–80 days) of the LUC is exposed. Evidence exists to suggest that a large portion of the intraseasonal variability in the LUC is related to the westward propagation of mesoscale eddies from the east of the mooring site.

Full access
Yuan Wang, Jonathan H. Jiang, Hui Su, Yong-Sang Choi, Lei Huang, Jianping Guo, and Yuk L. Yung

Abstract

Observations show that the Arctic sea ice cover has been shrinking at an unprecedented rate since the 1970s. Even though the accumulation of greenhouse gases in the atmosphere has been closely linked with the loss of Arctic sea ice, the role of atmospheric aerosols in past and future Arctic climate change remains elusive. Using a state-of-the-art fully coupled climate model, the authors assess the equilibrium responses of the Arctic sea ice to the different aerosol emission scenarios and investigate the pathways by which aerosols impose their influence in the Arctic. These sensitivity experiments show that the impacts of aerosol perturbations on the pace of sea ice melt effectively modulate the ocean circulation and atmospheric feedbacks. Because of the contrasting evolutions of particulate pollution in the developed and developing countries since the 1970s, the opposite aerosol forcings from different midlatitude regions are nearly canceled out in the Arctic during the boreal summer, resulting in a muted aerosol effect on the recent sea ice changes. Consequently, the greenhouse forcing alone can largely explain the observed Arctic sea ice loss up to the present. In the next few decades, the projected alleviation of particulate pollution in the Northern Hemisphere can contribute up to 20% of the total Arctic sea ice loss and 0.7°C surface warming over the Arctic. The authors’ model simulations further show that aerosol microphysical effects on the Arctic clouds are the major component in the total aerosol radiative forcing over the Arctic. Compared to the aerosol-induced energy imbalance in lower latitudes outside the Arctic, the local radiative forcing by aerosol variations within the Arctic, due to either local emissions or long-range transports, is more efficient in determining the sea ice changes and Arctic climate change.

Full access
Dongliang Yuan, Jing Wang, Tengfei Xu, Peng Xu, Zhou Hui, Xia Zhao, Yihua Luan, Weipeng Zheng, and Yongqiang Yu

Abstract

Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.

Full access
Lei Yang, Dongxiao Wang, Jian Huang, Xin Wang, Lili Zeng, Rui Shi, Yunkai He, Qiang Xie, Shengan Wang, Rongyu Chen, Jinnan Yuan, Qiang Wang, Ju Chen, Tingting Zu, Jian Li, Dandan Sui, and Shiqiu Peng

Abstract

Air–sea interaction in the South China Sea (SCS) has direct impacts on the weather and climate of its surrounding areas at various spatiotemporal scales. In situ observation plays a vital role in exploring the dynamic characteristics of the regional circulation and air–sea interaction. Remote sensing and regional modeling are expected to provide high-resolution data for studies of air–sea coupling; however, careful validation and calibration using in situ observations is necessary to ensure the quality of these data. Through a decade of effort, a marine observation network in the SCS has begun to be established, yielding a regional observatory for the air–sea synoptic system.

Earlier observations in the SCS were scarce and narrowly focused. Since 2004, an annual series of scientific open cruises during late summer in the SCS has been organized by the South China Sea Institute of Oceanology (SCSIO), carefully designed based on the dynamic characteristics of the oceanic circulation and air–sea interaction in the SCS region. Since 2006, the cruise carried a radiometer and radiosondes on board, marking a new era of marine meteorological observation in the SCS. Fixed stations have been established for long-term and sustained records. Observations obtained through the network have been used to study regional ocean circulation and processes in the marine atmospheric boundary layer. In the future, a great number of multi-institutional, collaborative scientific cruises and observations at fixed stations will be carried out to establish a mesoscale hydrological and marine meteorological observation network in the SCS.

Full access
Yaohui Li, Xing Yuan, Hongsheng Zhang, Runyuan Wang, Chenghai Wang, Xianhong Meng, Zhiqiang Zhang, Shanshan Wang, Yang Yang, Bo Han, Kai Zhang, Xiaoping Wang, Hong Zhao, Guangsheng Zhou, Qiang Zhang, Qing He, Ni Guo, Wei Hou, Cunjie Zhang, Guoju Xiao, Xuying Sun, Ping Yue, Sha Sha, Heling Wang, Tiejun Zhang, Jinsong Wang, and Yubi Yao

Abstract

A major experimental drought research project entitled “Mechanisms and Early Warning of Drought Disasters over Northern China” (DroughtEX_China) was launched by the Ministry of Science and Technology of China in 2015. The objective of DroughtEX_China is to investigate drought disaster mechanisms and provide early-warning information via multisource observations and multiscale modeling. Since the implementation of DroughtEX_China, a comprehensive V-shape in situ observation network has been established to integrate different observational experiment systems for different landscapes, including crops in northern China. In this article, we introduce the experimental area, observational network configuration, ground- and air-based observing/testing facilities, implementation scheme, and data management procedures and sharing policy. The preliminary observational and numerical experimental results show that the following are important processes for understanding and modeling drought disasters over arid and semiarid regions: 1) the soil water vapor–heat interactions that affect surface soil moisture variability, 2) the effect of intermittent turbulence on boundary layer energy exchange, 3) the drought–albedo feedback, and 4) the transition from stomatal to nonstomatal control of plant photosynthesis with increasing drought severity. A prototype of a drought monitoring and forecasting system developed from coupled hydroclimate prediction models and an integrated multisource drought information platform is also briefly introduced. DroughtEX_China lasted for four years (i.e., 2015–18) and its implementation now provides regional drought monitoring and forecasting, risk assessment information, and a multisource data-sharing platform for drought adaptation over northern China, contributing to the global drought information system (GDIS).

Open access
Wei Wang, Jiaping Xu, Yunqiu Gao, Ivan Bogoev, Jian Cui, Lichen Deng, Cheng Hu, Cheng Liu, Shoudong Liu, Jing Shen, Xiaomin Sun, Wei Xiao, Guofu Yuan, and Xuhui Lee

Abstract

Performance evaluation of an integrated eddy covariance (EC) instrument called the IRGASON, with a separated EC for reference, was conducted in a desert riparian Populus euphratica stand in the lower Tarim River basin in northwestern China. The separated EC consisted of an open-path gas analyzer and a sonic anemometer separated by 20 cm. The IRGASON integrates an open-path gas analyzer and a sonic anemometer into the same sensing volume, thus eliminating sensor separation in comparison to the traditional open-path EC setup. Integrating the infrared gas analyzer’s sensing head into the sensing volume of the sonic anemometer had negligible effects on wind speed and friction velocity observations of the IRGASON. Physiologically unreasonable daytime CO2 uptake was observed by both systems during the cold winter season (mean air temperature of −6.7°C), when the trees were dormant without any photosynthetic activities. The mean midday CO2 flux was −1.65 and −1.61 μmol m−2 s−1 for the IRGASON and the separated EC setup, respectively. No evidence was found for sensor self-heating as the cause of the apparent uptake CO2 flux. Instead, the uptake CO2 flux appeared to be an artifact of the spectroscopic effect of the IRGASON’s gas analyzer. After adjusting for this spectroscopic effect using a relationship with the sensible heat flux, the wintertime IRGASON CO2 flux became physiologically reasonable (mean value of −0.04 μmol m−2 s−1).

Full access
Bowen Pan, Yuan Wang, Jiaxi Hu, Yun Lin, Jen-Shan Hsieh, Timothy Logan, Xidan Feng, Jonathan H. Jiang, Yuk L. Yung, and Renyi Zhang

Abstract

The radiative and microphysical properties of Saharan dust are believed to impact the Atlantic regional climate and tropical cyclones (TCs), but the detailed mechanism remains uncertain. In this study, atmosphere-only simulations are performed from 2002 to 2006 using the Community Atmospheric Model, version 5.1, with and without dust emission from the Sahara Desert. The Saharan dust exhibits noticeable impacts on the regional longwave and shortwave radiation, cloud formation, and the convective systems over West Africa and the tropical Atlantic. The African easterly jet and West African monsoon are modulated by dust, leading to northward shifts of the intertropical convergence zone and the TC genesis region. The dust events induce positive midlevel moisture and entropy deficit anomalies, enhancing the TC genesis. On the other hand, the increased vertical wind shear and decreased low-level vorticity and potential intensity by dust inhibit TC formation in the genesis region. The ventilation index shows a decrease in the intensification region and an increase in the genesis region by dust, corresponding to favorable and unfavorable TC activities, respectively. The comparison of nondust scenarios in 2005 and 2006 shows more favorable TC conditions in 2005 characterized by higher specific humidity and potential intensity, but lower ventilation index, wind shear, and entropy deficit. Those are attributable to the observed warmer sea surface temperature (SST) in 2005, in which dust effects can be embedded. Our results imply significant dust perturbations on the radiative budget, hydrological cycle, and large-scale environments relevant to TC activity over the Atlantic.

Full access
Xiang Li, Dongliang Yuan, Zheng Wang, Yao Li, Corry Corvianawatie, Dewi Surinati, Asep Sandra, Ahmad Bayhaqi, Praditya Avianto, Edi Kusmanto, Dirham Dirhamsyah, and Zainal Arifin

Abstract

The ocean currents in the Halmahera Sea are studied using a subsurface mooring deployed in the Jailolo Strait from November 2015 to October 2017. The subtidal currents of the mooring measurements are characterized by a two-layer system, with the current variability below about 200 m in opposite phases to that in the upper layer. The mean along-strait velocity (ASV) is toward the Indonesian seas in the whole water column, producing an estimated mean transport of 2.44 ± 0.42 Sv (1 Sv ≡ 106 m3 s−1). The errors of the transport calculation based on the single mooring measurements are estimated to be less than 15% using simulations of high-resolution ocean models. A weak current is observed to flow northward during 2017 at the bottom of the strait. The ASV variability is found to be dominated by an annual cycle both in the upper and lower layers. The total transport, however, is dominated by semiannual variability because of the cancelation of the annual transports in the upper and lower layers. The variability of the transport is suggested to be driven by the pressure difference between the Pacific Ocean and the Indonesian seas, as evidenced by the agreement between the satellite pressure gradient and the two-layer transports. The transport of the Jailolo Strait during the 2015/16 super El Niño is found to be nearly the same as that during the 2016 La Niña, suggesting that the interannual variability of the transport is much smaller than the seasonal cycle.

Free access
Ming Feng, Yongliang Duan, Susan Wijffels, Je-Yuan Hsu, Chao Li, Huiwu Wang, Yang Yang, Hong Shen, Jianjun Liu, Chunlin Ning, and Weidong Yu

Abstract

Sea surface temperatures (SSTs) north of Australia in the Indonesian–Australian Basin are significantly influenced by Madden–Julian oscillation (MJO), an eastward-moving atmospheric disturbance that traverses the globe in the tropics. The region also has large-amplitude diurnal SST variations, which may influence the air–sea heat and moisture fluxes, that provide feedback to the MJO evolution. During the 2018/19 austral summer, a field campaign aiming to better understand the influences of air–sea coupling on the MJO was conducted north of Australia in the Indonesian–Australian Basin. Surface meteorology from buoy observations and upper-ocean data from autonomous fast-profiling float observations were collected. Two MJO convective phases propagated eastward across the region in mid-December 2018 and late January 2019 and the second MJO was in conjunction with a tropical cyclone development. Observations showed that SST in the region was rather sensitive to the MJO forcing. Air–sea heat fluxes warmed the SST throughout the 2018/19 austral summer, punctuated by the MJO activities, with a 2°–3°C drop in SST during the two MJO events. Substantial diurnal SST variations during the suppressed phases of the MJOs were observed, and the near-surface thermal stratifications provided positive feedback for the peak diurnal SST amplitude, which may be a mechanism to influence the MJO evolution. Compared to traditionally vessel-based observation programs, we have relied on fast-profiling floats as the main vehicle in measuring the upper-ocean variability from diurnal to the MJO time scales, which may pave the way for using cost-effective technology in similar process studies.

Full access
Shuwen Tan, Larry J. Pratt, Dongliang Yuan, Xiang Li, Zheng Wang, Yao Li, Corry Corvianawatie, Dewi Surinati, Asep S. Budiman, and Ahmad Bayhaqi

Abstract

Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.

Restricted access