Search Results

You are looking at 51 - 60 of 60 items for

  • Author or Editor: Christian D. Kummerow x
  • All content x
Clear All Modify Search
Christian D. Kummerow, David L. Randel, Mark Kulie, Nai-Yu Wang, Ralph Ferraro, S. Joseph Munchak, and Veljko Petkovic

Abstract

The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.

Full access
Song Yang, William S. Olson, Jian-Jian Wang, Thomas L. Bell, Eric A. Smith, and Christian D. Kummerow

Abstract

Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5°-resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r ∼0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5°-resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5°-resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5°-resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.

Full access
Arthur Y. Hou, Sara Q. Zhang, Arlindo M. da Silva, William S. Olson, Christian D. Kummerow, and Joanne Simpson

As a follow-on to the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration in the United States, the National Space Development Agency of Japan, and the European Space Agency are considering a satellite mission to measure the global rainfall. The plan envisions an improved TRMM-like satellite and a constellation of eight satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-h intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and two Special Sensor Microwave/Imager (SSM/I) instruments.

Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the Tropics. It is shown that assimilating the 6-h-averaged TMI and SSM/I surface rain rate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper-tropospheric moisture in the analysis produced by the Goddard Earth Observing System Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System instrument and brightness temperature observations by the Television Infrared Observational Satellite Operational Vertical Sounder instruments.

Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the Tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the Tropics.

These results were obtained using a variational procedure based on a 6-h time integration of a column model of moist physics with prescribed dynamical and other physical tendencies. The procedure estimates moisture tendency corrections at observation locations by minimizing the least square differences between the observed TPW and rain rates and those generated by the column model over a 6-h analysis window. These tendency corrections are then applied during the assimilation cycle to compensate for errors arising from both initial conditions and deficiencies in model physics. Our results point to the importance of addressing deficiencies in model physics in assimilating data types such as precipitation, for which the forward model based on convective parameterizations may have significant systematic errors.

This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of four-dimensional global datasets for climate analysis and weather forecasting applications.

Full access
Richard M. Schulte, Christian D. Kummerow, Wesley Berg, Steven C. Reising, Shannon T. Brown, Todd C. Gaier, Boon H. Lim, and Sharmila Padmanabhan

Abstract

The rapid development of miniaturized satellite instrument technology has created a new opportunity to deploy constellations of passive microwave (PMW) radiometers to permit retrievals of the same Earth scene with very high temporal resolution to monitor cloud evolution and processes. For such a concept to be feasible, it must be shown that it is possible to distinguish actual changes in the atmospheric state from the variability induced by making observations at different Earth incidence angles (EIAs). To this end, we present a flexible and physical optimal estimation-based algorithm designed to retrieve profiles of atmospheric water vapor, cloud liquid water path, and cloud ice water path from cross-track PMW sounders. The algorithm is able to explicitly account for the dependence of forward model errors on EIA and atmospheric regime. When the algorithm is applied to data from the Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) CubeSat mission, its retrieved products are generally in agreement with those obtained from the similar but larger Microwave Humidity Sounder instrument. More importantly, when forward model brightness temperature offsets and assumed error covariances are allowed to change with EIA and sea surface temperature, view-angle-related biases are greatly reduced. This finding is confirmed in two ways: through a comparison with reanalysis data and by making use of brief periods in early 2019 during which the TEMPEST-D spacecraft was rotated such that its scan pattern was along track, allowing dozens of separate observations of any given atmospheric feature along the satellite’s ground track.

Free access

Satellite Data Simulator Unit

A Multisensor, Multispectral Satellite Simulator Package

Hirohiko Masunaga, Toshihisa Matsui, Wei-kuo Tao, Arthur Y. Hou, Christian D. Kummerow, Teruyuki Nakajima, Peter Bauer, William S. Olson, Miho Sekiguchi, and Takashi Y. Nakajima
Full access
Arthur Y. Hou, Ramesh K. Kakar, Steven Neeck, Ardeshir A. Azarbarzin, Christian D. Kummerow, Masahiro Kojima, Riko Oki, Kenji Nakamura, and Toshio Iguchi

Precipitation affects many aspects of our everyday life. It is the primary source of freshwater and has significant socioeconomic impacts resulting from natural hazards such as hurricanes, floods, droughts, and landslides. Fundamentally, precipitation is a critical component of the global water and energy cycle that governs the weather, climate, and ecological systems. Accurate and timely knowledge of when, where, and how much it rains or snows is essential for understanding how the Earth system functions and for improving the prediction of weather, climate, freshwater resources, and natural hazard events.

The Global Precipitation Measurement (GPM) mission is an international satellite mission specifically designed to set a new standard for the measurement of precipitation from space and to provide a new generation of global rainfall and snowfall observations in all parts of the world every 3 h. The National Aeronautics and Space Administration (NASA) and the Japan Aerospace and Exploration Agency (JAXA) successfully launched the Core Observatory satellite on 28 February 2014 carrying advanced radar and radiometer systems to serve as a precipitation physics observatory. This will serve as a transfer standard for improving the accuracy and consistency of precipitation measurements from a constellation of research and operational satellites provided by a consortium of international partners. GPM will provide key measurements for understanding the global water and energy cycle in a changing climate as well as timely information useful for a range of regional and global societal applications such as numerical weather prediction, natural hazard monitoring, freshwater resource management, and crop forecasting.

Full access
Christian Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D-B. Shin, and T. T. Wilheit

Abstract

This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back to the algorithm's poor separation between convective and stratiform precipitation coupled with a poor separation between stratiform and transition regions in the a priori cloud model database. In addition to now using an improved convective–stratiform classification scheme, the new algorithm also makes use of emission and scattering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties needed by the scheme's Bayesian inversion approach. Last, the algorithm over land has been modified primarily to better account for ambiguous classification where the scattering signature of precipitation could be confused with surface signals. All these changes have been implemented for both the TRMM Microwave Imager (TMI) and the Special Sensor Microwave Imager (SSM/I). Results from both sensors are very similar at the storm scale and for global averages. Surface rainfall products from the algorithm's operational version have been compared with conventional rainfall data over both land and oceans. Over oceans, GPROF results compare well with atoll gauge data. GPROF is biased negatively by 9% with a correlation of 0.86 for monthly 2.5° averages over the atolls. If only grid boxes with two or more atolls are used, the correlation increases to 0.91 but GPROF becomes positively biased by 6%. Comparisons with TRMM ground validation products from Kwajalein reveal that GPROF is negatively biased by 32%, with a correlation of 0.95 when coincident images of the TMI and Kwajalein radar are used. The absolute magnitude of rainfall measured from the Kwajalein radar, however, remains uncertain, and GPROF overestimates the rainfall by approximately 18% when compared with estimates done by a different research group. Over land, GPROF shows a positive bias of 17% and a correlation of 0.80 over monthly 5° grids when compared with the Global Precipitation Climatology Center (GPCC) gauge network. When compared with the precipitation radar (PR) over land, GPROF also retrieves higher rainfall amounts (20%). No vertical hydrometeor profile information is available over land. The correlation with the TRMM precipitation radar is 0.92 over monthly 5° grids, but GPROF is positively biased by 24% relative to the radar over oceans. Differences between TMI- and PR-derived vertical hydrometeor profiles below 2 km are consistent with this bias but become more significant with altitude. Above 8 km, the sensors disagree significantly, but the information content is low from both TMI and PR. The consistent bias between these two sensors without clear guidance from the ground-based data reinforces the need for better understanding of the physical assumptions going into these retrievals.

Full access
Arthur Y. Hou, David V. Ledvina, Arlindo M. da Silva, Sara Q. Zhang, Joanna Joiner, Robert M. Atlas, George J. Huffman, and Christian D. Kummerow

Abstract

This article describes a variational framework for assimilating the SSM/I-derived surface rain rate and total precipitable water (TPW) and examines their impact on the analysis produced by the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The SSM/I observations consist of tropical rain rates retrieved using the Goddard Profiling Algorithm and tropical TPW estimates produced by Wentz.

In a series of assimilation experiments for December 1992, results show that the SSM/I-derived rain rate, despite current uncertainty in its intensity, is better than the model-generated precipitation. Assimilating rainfall data improves cloud distributions and the cloudy-sky radiation, while assimilating TPW data reduces a moisture bias in the lower troposphere to improve the clear-sky radiation. Together, the two data types reduce the monthly mean spatial bias by 46% and the error standard deviation by 26% in the outgoing longwave radiation (OLR) averaged over the Tropics, as compared with the NOAA OLR observation product. The improved cloud distribution, in turn, improves the solar radiation at the surface. There is also evidence that the latent heating change associated with the improved precipitation improves the large-scale circulation in the Tropics. This is inferred from a comparison of the clear-sky brightness temperatures for TIROS Operational Vertical Sounder channel 12 computed from the GEOS analyses with the observed values, suggesting that rainfall assimilation reduces a prevailing moist bias in the upper-tropospheric humidity in the GEOS system through enhanced subsidence between the major convective centers.

This work shows that assimilation of satellite-derived precipitation and TPW can reduce state-dependent systematic errors in the OLR, clouds, surface radiation, and the large-scale circulation in the assimilated dataset. The improved analysis also leads to better short-range forecasts, but the impact is modest compared with improvements in the time-averaged signals in the analysis. The study shows that, in the presence of biases and other errors of the forecast model, it is possible to improve the time-averaged “climate content” in the data without comparable improvements in forecast. The full impact of these data types on the analysis cannot be measured solely in terms of forecast skills.

Full access
William S. Olson, Christian D. Kummerow, Song Yang, Grant W. Petty, Wei-Kuo Tao, Thomas L. Bell, Scott A. Braun, Yansen Wang, Stephen E. Lang, Daniel E. Johnson, and Christine Chiu

Abstract

A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.

Full access
Toshihisa Matsui, Takamichi Iguchi, Xiaowen Li, Mei Han, Wei-Kuo Tao, Walter Petersen, Tristan L'Ecuyer, Robert Meneghini, William Olson, Christian D. Kummerow, Arthur Y. Hou, Mathew R. Schwaller, Erich F. Stocker, and John Kwiatkowski
Full access