Search Results

You are looking at 51 - 60 of 66 items for

  • Author or Editor: Jeffrey Anderson x
  • All content x
Clear All Modify Search
Jason A. Otkin, Mark Shafer, Mark Svoboda, Brian Wardlow, Martha C. Anderson, Christopher Hain, and Jeffrey Basara
Full access
Soyoung Ha, Chris Snyder, William C. Skamarock, Jeffrey Anderson, and Nancy Collins

Abstract

A global atmospheric analysis and forecast system is constructed based on the atmospheric component of the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new covariance models at different scales. Cycling experiments with the assimilation of real observations show that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution forecasts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial scale for skillful precipitation forecasts is evaluated over the high-resolution area of the variable-resolution mesh. Skill decreases more rapidly at smaller scales, but the variable mesh consistently outperforms the coarse uniform mesh in precipitation forecasts at all times and thresholds. Use of incremental analysis updates (IAU) greatly decreases high-frequency noise overall and improves the quality of EnKF analyses, particularly in the tropics. Important aspects of the system design related to the unstructured Voronoi mesh are also investigated, including algorithms for handling the C-grid staggered horizontal velocities.

Full access
Hui Liu, Jeffrey Anderson, Ying-Hwa Kuo, Chris Snyder, and Alain Caya

Abstract

A nonlocal quasi-phase radio occultation (RO) observation operator is evaluated in the assimilation of Challenging Minisatellite Payload (CHAMP) radio occultation refractivity using a Weather Research and Forecasting (WRF) ensemble data assimilation system at 50-km resolution. The nonlocal operator calculates the quasi phase through integration of the model refractivity along the observed ray paths. As a comparison, a local refractivity operator that calculates the model refractivity at the observed ray perigee points is also evaluated. The assimilation is done over North America during January 2003 in two different situations: in conjunction with dense, high-quality radiosonde observations and with only satellite cloud drift wind observations. Analyses of temperature and water vapor with the RO refractivity assimilated using the local and nonlocal operator are verified against nearby withheld radiosonde observations. The bias and RMS errors of the analyses of water vapor and temperature using the nonlocal operator are significantly reduced compared with those using the local operator in the troposphere when the only additional observations are satellite cloud drift winds. The reduction of the bias and RMS errors is reduced when radiosonde observations are assimilated.

Full access
Nedjeljka Žagar, Jeffrey Anderson, Nancy Collins, Timothy Hoar, Kevin Raeder, Lili Lei, and Joseph Tribbia

Abstract

Global data assimilation systems for numerical weather prediction (NWP) are characterized by significant uncertainties in tropical analysis fields. Furthermore, the largest spread of global ensemble forecasts in the short range on all scales is in the tropics. The presented results suggest that these properties hold even in the perfect-model framework and the ensemble Kalman filter data assimilation with a globally homogeneous network of wind and temperature profiles. The reasons for this are discussed by using the modal analysis, which provides information about the scale dependency of analysis and forecast uncertainties and information about the efficiency of data assimilation to reduce the prior uncertainties in the balanced and inertio-gravity dynamics.

The scale-dependent representation of variance reduction of the prior ensemble by the data assimilation shows that the peak efficiency of data assimilation is on the synoptic scales in the midlatitudes that are associated with quasigeostrophic dynamics. In contrast, the variance associated with the inertia–gravity modes is less successfully reduced on all scales. A smaller information content of observations on planetary scales with respect to the synoptic scales is discussed in relation to the large-scale tropical uncertainties that current data assimilation methodologies do not address successfully. In addition, it is shown that a smaller reduction of the large-scale uncertainties in the prior state for NWP in the tropics than in the midlatitudes is influenced by the applied radius for the covariance localization.

Full access
Jeffrey Anderson, Tim Hoar, Kevin Raeder, Hui Liu, Nancy Collins, Ryan Torn, and Avelino Avellano

The Data Assimilation Research Testbed (DART) is an open-source community facility for data assimilation education, research, and development. DART's ensemble data assimilation algorithms, careful software engineering, and diagnostic tools allow atmospheric scientists, oceanographers, hydrologists, chemists, and other geophysicists to build state-of-the-art data assimilation systems with unprecedented ease. For global numerical weather prediction, DART produces ensemble-mean analyses comparable to analyses from major centers while also providing initial conditions for ensemble predictions. In addition, DART supports more novel assimilation applications like parameter estimation, sensitivity analysis, observing system design, and smoothing. Implementing basic systems for large models requires only a few person-weeks; comprehensive systems have been built in a few months. Incorporating new observation types is also straightforward, requiring only a forward operator mapping between a model's state and an observation's expected value. Forward operators for standard, in situ observations and novel types, like GPS radio occultation soundings, are available. DART algorithms scale well on a variety of parallel architectures, allowing large data assimilation problems to be studied. DART also includes many low-order models and an ensemble assimilation tutorial appropriate for undergraduate and graduate instruction.

Full access
Jason A. Otkin, Mark Svoboda, Eric D. Hunt, Trent W. Ford, Martha C. Anderson, Christopher Hain, and Jeffrey B. Basara

Abstract

Given the increasing use of the term “flash drought” by the media and scientific community, it is prudent to develop a consistent definition that can be used to identify these events and to understand their salient characteristics. It is generally accepted that flash droughts occur more often during the summer owing to increased evaporative demand; however, two distinct approaches have been used to identify them. The first approach focuses on their rate of intensification, whereas the second approach implicitly focuses on their duration. These conflicting notions for what constitutes a flash drought (i.e., unusually fast intensification vs short duration) introduce ambiguity that affects our ability to detect their onset, monitor their development, and understand the mechanisms that control their evolution. Here, we propose that the definition for “flash drought” should explicitly focus on its rate of intensification rather than its duration, with droughts that develop much more rapidly than normal identified as flash droughts. There are two primary reasons for favoring the intensification approach over the duration approach. First, longevity and impact are fundamental characteristics of drought. Thus, short-term events lasting only a few days and having minimal impacts are inconsistent with the general understanding of drought and therefore should not be considered flash droughts. Second, by focusing on their rapid rate of intensification, the proposed “flash drought” definition highlights the unique challenges faced by vulnerable stakeholders who have less time to prepare for its adverse effects.

Open access
Alicia R. Karspeck, Steve Yeager, Gokhan Danabasoglu, Tim Hoar, Nancy Collins, Kevin Raeder, Jeffrey Anderson, and Joseph Tribbia

Abstract

The authors report on the implementation and evaluation of a 48-member ensemble adjustment Kalman filter (EAKF) for the ocean component of the Community Climate System Model, version 4 (CCSM4). The ocean assimilation system described was developed to support the eventual generation of historical ocean-state estimates and ocean-initialized climate predictions with the CCSM4 and its next generation, the Community Earth System Model (CESM). In this initial configuration of the system, daily subsurface temperature and salinity data from the 2009 World Ocean Database are assimilated into the ocean model from 1 January 1998 to 31 December 2005. Each ensemble member of the ocean is forced by a member of an independently generated CCSM4 atmospheric EAKF analysis, making this a loosely coupled framework. Over most of the globe, the time-mean temperature and salinity fields are improved relative to an identically forced ocean model simulation without assimilation. This improvement is especially notable in strong frontal regions such as the western and eastern boundary currents. The assimilation system is most effective in the upper 1000 m of the ocean, where the vast majority of in situ observations are located. Because of the shortness of this experiment, ocean variability is not discussed. Challenges that arise from using an ocean model with strong regional biases, coarse resolution, and low internal variability to assimilate real observations are discussed, and areas of ongoing improvement for the assimilation system are outlined.

Full access
Kevin Raeder, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Jennifer E. Kay, Peter H. Lauritzen, and Robert Pincus

Abstract

The Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation. This provides a large set of data assimilation tools for climate model research and development. Aspects of the interface to the Community Earth System Model (CESM) software are discussed and a variety of applications are illustrated, ranging from model development to the production of long series of analyses. CAM output is compared directly to real observations from platforms ranging from radiosondes to global positioning system satellites. Such comparisons use the temporally and spatially heterogeneous analysis error estimates available from the ensemble to provide very specific forecast quality evaluations. The ability to start forecasts from analyses, which were generated by CAM on its native grid and have no foreign model bias, contributed to the detection of a code error involving Arctic sea ice and cloud cover. The potential of parameter estimation is discussed. A CAM ensemble reanalysis has been generated for more than 15 yr. Atmospheric forcings from the reanalysis were required as input to generate an ocean ensemble reanalysis that provided initial conditions for decadal prediction experiments. The software enables rapid experimentation with differing sets of observations and state variables, and the comparison of different models against identical real observations, as illustrated by a comparison of forecasts initialized by interpolated ECMWF analyses and by DART/CAM analyses.

Full access
Martha C. Anderson, J. M. Norman, John R. Mecikalski, Ryan D. Torn, William P. Kustas, and Jeffrey B. Basara

Abstract

Disaggregation of regional-scale (103 m) flux estimates to micrometeorological scales (101–102 m) facilitates direct comparison between land surface models and ground-based observations. Inversely, it also provides a means for upscaling flux-tower information into a regional context. The utility of the Atmosphere–Land Exchange Inverse (ALEXI) model and associated disaggregation technique (DisALEXI) in effecting regional to local downscaling is demonstrated in an application to thermal imagery collected with the Geostationary Operational Environmental Satellite (GOES) (5-km resolution) and Landsat (60-m resolution) over the state of Oklahoma on 4 days during 2000–01. A related algorithm (DisTrad) sharpens thermal imagery to resolutions associated with visible–near-infrared bands (30 m on Landsat), extending the range in scales achievable through disaggregation. The accuracy and utility of this combined multiscale modeling system is evaluated quantitatively in comparison with measurements made with flux towers in the Oklahoma Mesonet and qualitatively in terms of enhanced information content that emerges at high resolution where flux patterns can be identified with recognizable surface phenomena.

Disaggregated flux fields at 30-m resolution were reaggregated over an area approximating the tower flux footprint and agreed with observed fluxes to within 10%. In contrast, 5-km flux predictions from ALEXI showed a higher relative error of 17% because of the gross mismatch in scale between model and measurement, highlighting the efficacy of disaggregation as a means for validating regional-scale flux predictions over heterogeneous landscapes. Sharpening the thermal inputs to DisALEXI with DisTrad did not improve agreement with observations in comparison with a simple bilinear interpolation technique because the sharpening interval associated with Landsat (60–30 m) was much smaller than the dominant scale of heterogeneity (200–500 m) in the scenes studied. Greater benefit is expected in application to Moderate Resolution Imaging Spectroradiometer (MODIS) data, where the potential sharpening interval (1 km to 250 m) brackets the typical agricultural field scale. Thermal sharpening did, however, significantly improve output in terms of visual information content and model convergence rate.

Full access
Angela Cheska Siongco, Hsi-Yen Ma, Stephen A. Klein, Shaocheng Xie, Alicia R. Karspeck, Kevin Raeder, and Jeffrey L. Anderson

Abstract

An ensemble seasonal hindcast approach is used to investigate the development of the equatorial Pacific Ocean cold sea surface temperature (SST) bias and its characteristic annual cycle in the Community Earth System Model, version 1 (CESM1). In observations, eastern equatorial Pacific SSTs exhibit a warm phase during boreal spring and a cold phase during late boreal summer–autumn. The CESM1 climatology shows a cold bias during both warm and cold phases. In our hindcasts, the cold bias during the cold phase develops in less than 6 months, whereas the cold bias during the warm phase takes longer to emerge. The fast-developing cold-phase cold bias is associated with too-strong vertical advection and easterly wind stress over the eastern equatorial region. The antecedent boreal summer easterly wind anomalies also appear in atmosphere-only simulations, indicating that the errors are intrinsic to the atmosphere component. For the slower-developing warm-phase cold bias, we find that the too-cold SSTs over the equatorial region are associated with a slowly evolving upward displacement of subsurface ocean zonal currents and isotherms that can be traced to the ocean component.

Free access