Search Results

You are looking at 51 - 56 of 56 items for

  • Author or Editor: Timothy J. Dunkerton x
  • All content x
Clear All Modify Search
Louis L. Lussier III, Blake Rutherford, Michael T. Montgomery, Mark A. Boothe, and Timothy J. Dunkerton

Abstract

The tropical cyclogenesis sequence of Hurricane Sandy is examined. It is shown that genesis occurs within a recirculating Kelvin cat’s-eye flow of a westward-propagating tropical wave. The cat’s-eye flow is able to provide a protective environment for the mesoscale vortex to grow and is characterized by gradual column moistening and increased areal coverage of deep cumulus convection. These findings are generally consistent with a recently proposed tropical cyclogenesis sequence referred to as the “marsupial paradigm.” Sandy’s cyclogenesis provides a useful illustration of the marsupial paradigm within a partially open recirculating region, with the opening located south of the pouch center. It is suggested that the opening acts to enhance the genesis process because it is adjacent to an environment characterized by warm, moist air, conditions favorable for tropical cyclogenesis. From a dynamical perspective, accretion of low-level cyclonic vorticity filaments into the developing vortex from several sources (the South American convergence zone, an easterly wave located west of the pre-Sandy wave, and cyclonic vorticity generated along Hispaniola) is documented. Organization and growth of the nascent storm is enhanced by this accretion of cyclonic vorticity. A Lagrangian trajectory analysis is used to assess potential contributions to Sandy’s spinup from a Caribbean gyre and the easterly wave that formed Hurricane Tony. This analysis indicates that these features are outside of the Lagrangian flow boundaries that define the pre-Sandy wave and do not directly contribute to spinup of the vortex. Finally, the effectiveness of forecasts from the U.S. and European operational numerical weather prediction models is discussed for this case.

Full access
Yoshio Kawatani, Kevin Hamilton, Kaoru Sato, Timothy J. Dunkerton, Shingo Watanabe, and Kazuyoshi Kikuchi

Abstract

Observational studies have shown that, on average, the quasi-biennial oscillation (QBO) exhibits a faster phase progression and shorter period during El Niño than during La Niña. Here, the possible mechanism of QBO modulation associated with ENSO is investigated using the MIROC-AGCM with T106 (~1.125°) horizontal resolution. The MIROC-AGCM simulates QBO-like oscillations without any nonorographic gravity wave parameterizations. A 100-yr integration was conducted during which annually repeating sea surface temperatures based on the composite observed El Niño conditions were imposed. A similar 100-yr La Niña integration was also conducted. The MIROC-AGCM simulates realistic differences between El Niño and La Niña, notably shorter QBO periods, a weaker Walker circulation, and more equatorial precipitation during El Niño than during La Niña. Near the equator, vertical wave fluxes of zonal momentum in the uppermost troposphere are larger and the stratospheric QBO forcing due to interaction of the mean flow with resolved gravity waves (particularly for zonal wavenumber ≥43) is much larger during El Niño. The tropical upwelling associated with the Brewer–Dobson circulation is also stronger in the El Niño simulation. The effects of the enhanced tropical upwelling during El Niño are evidently overcome by enhanced wave driving, resulting in the shorter QBO period. The integrations were repeated with another model version (MIROC-ECM with T42 horizontal resolution) that employs a parameterization of nonorographic gravity waves in order to simulate a QBO. In the MIROC-ECM the average QBO periods are nearly identical in the El Niño and La Niña simulations.

Free access
Yoshio Kawatani, Shingo Watanabe, Kaoru Sato, Timothy J. Dunkerton, Saburo Miyahara, and Masaaki Takahashi

Abstract

Three-dimensional wave forcing of simulated quasi-biennial oscillation (QBO) is investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution). In both the eastward and westward wind shear phases of the QBO, nearly all Eliassen–Palm flux (EP flux) divergence due to internal inertia–gravity waves (defined as fluctuations with zonal wavenumber ≥12) results from the divergence of the vertical component of the flux. On the other hand, EP flux divergence due to equatorial trapped waves (EQWs) results from both the meridional and vertical components of the flux in regions of strong vertical wind shear. Longitudinal dependence of wave forcing is also investigated by three-dimensional wave activity flux applicable to gravity waves. Near the top of the Walker circulation, strong eastward (westward) wave forcing occurs in the Eastern (Western) Hemisphere due to internal inertia–gravity waves with small horizontal phase speed. In the eastward wind shear zone associated with the QBO, the eastward wave forcing due to internal inertia–gravity waves in the Eastern Hemisphere is much larger than that in the Western Hemisphere, whereas in the westward wind shear zone, westward wave forcing does not vary much in the zonal direction. Zonal variation of wave forcing in the stratosphere results from (i) zonal variation of wave sources, (ii) the vertically sheared zonal winds associated with the Walker circulation, and (iii) the phase of the QBO.

Full access
Yoshio Kawatani, Shingo Watanabe, Kaoru Sato, Timothy J. Dunkerton, Saburo Miyahara, and Masaaki Takahashi

Abstract

The roles of equatorial trapped waves (EQWs) and internal inertia–gravity waves in driving the quasi-biennial oscillation (QBO) are investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution) integrated for three years. The model, which does not use a gravity wave drag parameterization, simulates a QBO. Although the simulated QBO has a shorter period than that of the real atmosphere, its amplitudes and structure in the lower stratosphere are fairly realistic. The zonal wavenumber/frequency spectra of simulated outgoing longwave radiation represent realistic signals of convectively coupled EQWs. Clear signals of EQWs are also seen in the stratospheric wind components. In the eastward wind shear of the QBO, eastward EQWs including Kelvin waves contribute up to ∼25%–50% to the driving of the QBO. The peaks of eastward wave forcing associated with EQWs and internal inertia–gravity waves occur at nearly the same time at the same altitude. On the other hand, westward EQWs contribute up to ∼10% to driving the QBO during the weak westward wind phase but make almost zero contribution during the relatively strong westward wind phase. Extratropical Rossby waves propagating into the equatorial region contribute ∼10%–25%, whereas internal inertia–gravity waves with zonal wavelength ≲1000 km are the main contributors to the westward wind shear phase of the simulated QBO.

Full access
Gan Zhang, Zhuo Wang, Timothy J. Dunkerton, Melinda S. Peng, and Gudrun Magnusdottir

Abstract

With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The authors’ analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward intrusion of cold and dry extratropical air. The resultant mid- to upper-tropospheric dryness and strong vertical wind shear hindered TC development. Using the empirical orthogonal function analysis, the active Rossby wave breaking in August 2013 was found to be associated with a recurrent mode of the midlatitude jet stream over the North Atlantic, which represents the variability of the intensity and zonal extent of the jet. This mode is significantly correlated with Atlantic hurricane frequency. The correlation coefficient is comparable to the correlation of Atlantic hurricane frequency with the main development region (MDR) relative SST and higher than that with the Niño-3.4 index. This study highlights the extratropical impacts on Atlantic TC activity, which may have important implications for the seasonal predictability of Atlantic TCs.

Full access
Michael T. Montgomery, Christopher Davis, Timothy Dunkerton, Zhuo Wang, Christopher Velden, Ryan Torn, Sharanya J. Majumdar, Fuqing Zhang, Roger K. Smith, Lance Bosart, Michael M. Bell, Jennifer S. Haase, Andrew Heymsfield, Jorgen Jensen, Teresa Campos, and Mark A. Boothe

The principal hypotheses of a new model of tropical cyclogenesis, known as the marsupial paradigm, were tested in the context of Atlantic tropical disturbances during the National Science Foundation (NSF)-sponsored Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. PREDICT was part of a tri-agency collaboration, along with the National Aeronautics and Space Administration's Genesis and Rapid Intensification Processes (NASA GRIP) experiment and the National Oceanic and Atmospheric Administration's Intensity Forecasting Experiment (NOAA IFEX), intended to examine both developing and nondeveloping tropical disturbances.

During PREDICT, a total of 26 missions were flown with the NSF/NCAR Gulfstream V (GV) aircraft sampling eight tropical disturbances. Among these were four cases (Fiona, ex-Gaston, Karl, and Matthew) for which three or more missions were conducted, many on consecutive days. Because of the scientific focus on the Lagrangian nature of the tropical cyclogenesis process, a wave-relative frame of reference was adopted throughout the experiment in which various model- and satellite-based products were examined to guide aircraft planning and real-time operations. Here, the scientific products and examples of data collected are highlighted for several of the disturbances. The suite of cases observed represents arguably the most comprehensive, self-consistent dataset ever collected on the environment and mesoscale structure of developing and nondeveloping predepression disturbances.

Full access