Search Results

You are looking at 51 - 60 of 68 items for

  • Author or Editor: Witold F. Krajewski x
  • Refine by Access: All Content x
Clear All Modify Search
Bong-Chul Seo, Brenda Dolan, Witold F. Krajewski, Steven A. Rutledge, and Walter Petersen

Abstract

This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASA GPM ground validation field campaign carried out in May–June 2013. The objective of this study is to understand the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate estimators according to radar-identified precipitation types, and to evaluate RR estimates generated by the recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the convective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–rain rate (ZR) relation that might lead to substantial underestimation for the presented case.

Full access
James A. Smith, Mary Lynn Baeck, Gabriele Villarini, and Witold F. Krajewski

Abstract

Extreme floods in the Delaware River basin are examined through analyses of a sequence of record and near-record floods during September 2004, April 2005, and June 2006. The three flood episodes reflect three principal flood-generating mechanisms in the eastern United States: tropical cyclones (September 2004); late winter–early spring extratropical systems (April 2005); and warm-season convective systems (June 2006). Extreme flooding in the Delaware River basin is the product of heavy rainfall and runoff from high-gradient portions of the watershed. Orographic precipitation mechanisms play a central role in the extreme flood climatology of the Delaware River basin and, more generally, for the eastern United States. Extreme flooding for the 2004–06 events was produced in large measure from forested portions of the watershed. Analyses of flood frequency based on annual flood peak observations from U.S. Geological Survey (USGS) stream gauging stations with “long” records illustrate the striking heterogeneity of flood response over the region, the important role of landfalling tropical cyclones for the upper tail of flood peak distributions, and the prevalence of nonstationarities in flood peak records. Analyses show that changepoints are a more common source of nonstationarity than linear time trends. Regulation by dams and reservoirs plays an important role in determining changepoints, but the downstream effects of reservoirs on flood distributions are limited.

Full access
Grace Zalenski, Witold F. Krajewski, Felipe Quintero, Pedro Restrepo, and Steve Buan

Abstract

This paper explores the skill of river stage forecasts produced by the National Weather Service (NWS). Despite the importance of the verification process in establishing a reference that allows advancement in river forecast technology, there is relatively little literature on this topic. This study aims to contribute to this subject. The study analyzed the North Central River Forecast Center’s river stage forecasts for 51 gauges in eastern and central Iowa between 1999 and 2014. The authors explored forecast skill dependence characteristics such as upstream area, water travel time, and the number of gauges located upstream of each forecasting point. They also assessed the influence of rainfall uncertainty on stage error by examining the relationship between the forecast skill and its antecedent 24-h observed rainfall. The results show that when using persistence as a reference for comparison with NWS actual forecasts, the NWS forecasts are better for predictions below and above flood stage. The difference in root-mean-square error (RMSE) between the actual and persistence forecasts ranges between 0.04 and 1.24 ft, and it increases with lead time. Locations with fewer upstream gauges exhibit greater variation in forecast skill than locations that are well gauged, especially at high flood levels. Strong predictive relationships between the physical characteristics of a basin (travel time, upstream drainage area), rainfall quantities, and forecast skill have not been identified.

Full access
Efrat Morin, Witold F. Krajewski, David C. Goodrich, Xiaogang Gao, and Soroosh Sorooshian

Abstract

Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). Often, rain gauge rainfall observations are used in combination with the radar data to find the optimal parameters in the ZR transformation equation. The scale dependency of the power-law ZR parameters when estimated from radar reflectivity and rain gauge intensity data is explored herein. The multiplicative (a) and exponent (b) parameters are said to be “scale dependent” if applying the observed and calculated rainfall intensities to objective function at different scale results in different “optimal” parameters. Radar and gauge data were analyzed from convective storms over a midsize, semiarid, and well-equipped watershed. Using the root-mean-square difference (rmsd) objective function, a significant scale dependency was observed. Increased time- and space scales resulted in a considerable increase of the a parameter and decrease of the b parameter. Two sources of uncertainties related to scale dependency were examined: 1) observational uncertainties, which were studied both experimentally and with simplified models that allow representation of observation errors; and 2) model uncertainties. It was found that observational errors are mainly (but not only) associated with positive bias of the b parameter that is reduced with integration, at least for small scales. Model errors also result in scale dependency, but the trend is less systematic, as in the case of observational errors. It is concluded that identification of optimal scale for ZR relationship determination requires further knowledge of reflectivity and rain-intensity error structure.

Full access
Piotr A. Lewandowski, William E. Eichinger, Anton Kruger, and Witold F. Krajewski

Abstract

A significant scale gap between radar and in situ measurements of rainfall using rain gauges and disdrometers indicates a pressing need for improved knowledge of rainfall variability at the spatial scales below those of today’s operational radar rainfall products, that is, ∼1–4 km. Lidar technology has the potential to fulfill this need, but there has been inconsistency in the literature pertaining to quantitative observations of rain using lidar. Several publications have stated that light scattering properties of raindrops could not be correlated with rain rates, while other papers have demonstrated the existence of such relationships. This note provides empirical evidence in support of the latter claim.

The authors conducted a simple experiment using a near-horizontal-pointing elastic lidar to observe rain in Iowa City, Iowa, in the fall of 2005. The lidar signal was used to estimate rainfall quantities that were subsequently compared with independent estimates of the same quantities obtained from an optical disdrometer that was placed about 370 m from the lidar, ∼10 m below the lidar beam. To perform the conversion from the raw lidar signal, the authors used an optical geometry-based procedure to estimate optical extinction data. A theoretical relationship between extinction coefficients and rain rates was derived based on a theoretical drop size distribution. The parameters of the relationship were found through a best-fit procedure using lidar and disdrometer data. The results show that the lidar-derived rain rates correspond to those obtained from the optical disdrometer with a root-mean-square difference of 55%.

The authors conclude that although a great deal remains to be done to improve the inversion algorithm, lidar measurements of rain are possible and warrant further studies. Lidars deployed in conjunction with disdrometers can provide high spatial (<5 m) and temporal (<1 min disdrometer, ∼1 s lidar) resolution data over a relatively long distance for rainfall measurements (1–2 km in the case of the University of Iowa lidar).

Full access
Bong-Chul Seo, Witold F. Krajewski, Felipe Quintero, Steve Buan, and Brian Connelly

Abstract

This study assesses streamflow predictions generated by two distributed hydrologic models, the Hillslope Link Model (HLM) and the National Water Model (NWM), driven by three radar-based precipitation forcing datasets. These forcing data include the Multi-Radar Multi-Sensor (MRMS), and the Iowa Flood Center’s single-polarization-based (IFC-SP) and dual-polarization-based (IFC-DP) products. To examine forcing- and model-dependent aspects of the representation of hydrologic processes, we mixed and matched all forcing data and models, and simulated streamflow for 2016–2018 based on six forcing-model combinations. The forcing product evaluation using independent ground reference data showed that the IFC-DP radar-only product’s accuracy is comparable to MRMS, which is rain gauge-corrected. Streamflow evaluation at 140 U.S. Geological Survey (USGS) stations in Iowa demonstrated that the HLM tended to perform slightly better than the NWM, generating streamflow with smaller volume errors and higher predictive power as measured by Kling-Gupta Efficiency (KGE). The authors also inspected the effect of estimation errors in the forcing products on streamflow generation and found that MRMS’s slight underestimation bias led to streamflow underestimation for all simulation years, particularly with the NWM. The less biased product (IFC-DP), which has higher error variability, resulted in increased runoff volumes with larger dispersion of errors compared to the ones derived from MRMS. Despite its tendency to underestimate, MRMS showed consistent performance with lower error variability as reflected by the KGE. The dispersion observed from the evaluation metrics (e.g., volume error and KGE) seems to decrease as scale becomes larger, implying that random errors in forcing are likely to average out at larger scale basins. The evaluation of simulated peaks revealed that an accurate estimation of peak (e.g., time and magnitude) remains challenging, as demonstrated by the highly scattered distribution of peak errors for both hydrologic models.

Restricted access
Felipe Quintero, Witold F. Krajewski, Ricardo Mantilla, Scott Small, and Bong-Chul Seo

Abstract

Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.

Full access
Witold F. Krajewski, Grzegorz J. Ciach, Jeffrey R. McCollum, and Ciprian Bacotiu

Abstract

The Global Precipitation Climatology Project (GPCP) established a multiyear global dataset of satellite-based estimates of monthly rainfall accumulations averaged over a grid of 2.5° × 2.5° geographical boxes. This paper describes an attempt to quantify the error variance of these estimates at selected reference sites. Fourteen reference sites were selected over the United States at the GPCP grid locations where high-density rain gauge network and high-quality data are available. A rigorous methodology for estimation of the error statistics of the reference sites was applied. A method of separating the reference error variance from the observed mean square difference between the reference and the GPCP products was proposed and discussed. As a result, estimates of the error variance of the GPCP products were obtained. Two kinds of GPCP products were evaluated: 1) satellite-only products, and 2) merged products that incorporate some rain gauge data that were available to the project. The error analysis results show that the merged product is characterized by smaller errors, both in terms of bias as well as the random component. The bias is, on average, 0.88 for the merged product and 0.70 for the satellite-only product. The average random component is 21% for the merged product and 79% for the satellite-only product. The random error is worse in the winter than in the summer. The error estimates agree well with their counterparts produced by the GPCP.

Full access
Grzegorz J. Ciach, Witold F. Krajewski, Emmanouil N. Anagnostou, Mary L. Baeck, James A. Smith, Jeffrey R. McCollum, and Anton Kruger

Abstract

This study presents a multicomponent rainfall estimation algorithm, based on weather radar and rain gauge network, that can be used as a ground-based reference in the satellite Tropical Rainfall Measuring Mission (TRMM). The essential steps are constructing a radar observable, its nonlinear transformation to rainfall, interpolation to rectangular grid, constructing several timescale accumulations, bias adjustment, and merging of the radar rainfall estimates and rain gauge data. Observations from a C-band radar in Darwin, Australia, and a local network of 54 rain gauges were used to calibrate and test the algorithm. A period of 25 days was selected, and the rain gauges were split into two subsamples to apply cross-validation techniques.

A Z–R relationship with continuous range dependence and a temporal interpolation scheme that accounts for the advection effects is applied. An innovative methodology was used to estimate the algorithm controlling parameters. The model was globally optimized by using an objective function on the level of the final products. This is equivalent to comparing hundreds of Z–R relationships using a uniform and representative performance criterion. The algorithm performance is fairly insensitive to the parameter variations around the optimum. This suggests that the accuracy limit of the radar rainfall estimation based on power-law Z–R relationships has been reached. No improvement was achieved by using rain regime classification prior to estimation.

Full access
Ibrahim Demir, Helen Conover, Witold F. Krajewski, Bong-Chul Seo, Radosław Goska, Yubin He, Michael F. McEniry, Sara J. Graves, and Walter Petersen

Abstract

In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).

Full access