Search Results

You are looking at 61 - 70 of 225 items for

  • Author or Editor: Bin Wang x
  • All content x
Clear All Modify Search
Renguang Wu and Bin Wang

Abstract

Climatological summer monsoon onset over the South China Sea (SCS) and the western North Pacific (WNP) (defined as the region of 10°–20°N, 120°–160°E) displays three distinct stages. Around mid-May, monsoon rain commences in the SCS and the Philippines. In early to mid-June, the monsoon rain extends to the southwestern Philippine Sea. After mid-July, the rainy season starts in the northeastern part of the WNP. The onset anomaly, however, displays an in-phase interannual variation across the entire WNP domain. The standard deviation of the onset date increases eastward from 3 pentads in the SCS to 5 pentads in the northeastern part of the domain. The large onset variability in the WNP is mainly attributed to large year-to-year changes of the seasonal cycle. The role of the intraseasonal oscillation is secondary but important especially in the SCS region. The El Niño–Southern Oscillation (ENSO)-related thermal contrast between the WNP and the equatorial central Pacific modulates significantly the seasonal migration of the monsoon trough, the subtropical high, and the convection zone over the WNP during late spring–early summer in the ENSO decay phase. Thus, ENSO plays a dominant role in the interannual variation of the WNP summer monsoon onset.

The general circulation model results suggest that during El Niño events, the warm SST anomalies in the equatorial eastern-central Pacific play a major role in generation of large-scale upper-level convergence and descent anomalies over the WNP. Meanwhile, the cold SST anomalies in the WNP induce lower-level anticyclonic wind anomalies and reduce convective instability. Both the remote and local SST forcing are important for delaying the seasonal movement of the monsoon trough and the western Pacific subtropical high and hence the onset of the monsoon rain. In the La Niña case, the local warm SST anomalies in the WNP are more important than the cold SST anomalies in the equatorial eastern-central Pacific in the generation of lower-level cyclonic wind anomalies and enhancement of convective instability.

Full access
Zhiling Xie and Bin Wang

Abstract

Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.

Full access
Liguang Wu and Bin Wang

Abstract

In order to understand the roles of various physical processes in baroclinic tropical cyclone (TC) motion and the vertical coupling between the upper- and lower-level circulations, a new dynamical framework is advanced. A TC is treated as a positive potential vorticity (PV) anomaly from environmental flows, and its motion is linked to the positive PV tendency. It is shown that a baroclinic TC moves to the region where the azimuthal wavenumber one component of the PV tendency reaches a maximum, but does not necessarily follow the ventilation flow (the asymmetric flow over the TC center). The contributions of individual physical processes to TC motion are equivalent to their contributions to the wavenumber one PV component of the PV tendency. A PV tendency diagnostic approach is described based on this framework. This approach is evaluated with idealized numerical experiments using a realistic hurricane model. The approach is capable of estimating TC propagation with a suitable accuracy and determining fractional contributions of individual physical processes (horizontal and vertical advection, diabatic heating, and friction) to motion. Since the impact of the ventilation flow is also included as a part of the influence of horizontal PV advection, this dynamical framework is more general and particularly useful in understanding the physical mechanisms of baroclinic and diabatic TC motion.

Full access
Bin Wang and Tianming Li

Abstract

Tropical boundary-layer flows interact with the free tropospheric circulation and underlying sea surface temperature, playing a critical role in coupling collective effects of cumulus heating with equatorial dynamics. In this paper a unified theoretical framework is developed in which convective interaction with large-scale circulation includes three mechanisms: convection–wave convergence (CWC) feedback, evaporation–wind (EW) feedback, and convection–frictional convergence (CFC) feedback. We examine the dynamic instability resulting from the convective interaction with circulation, in particular the role of CFC feedback mechanism.

CFC feedback results in an unstable mode that has distinctive characteristics from those occurring from CWC feedback or EW feedback in the absence of mean flow. The instability generated by CFC feedback is of low frequency with a typical growth rate on an order of 10−6 s−1. The unstable mode is a multiscale wave packet; a global-scale circulation couples with a large-scale (several thousand kilometers) convective complex. The complex is organized by boundary-layer convergence and may consist of a few synoptic-scale precipitation cells. The heating released in the complex in turn couples the moist Kelvin wave and the Rossby wave with the gravest meridional structure, forming a dispersive system. The energy propagates slower than the individual cells within the wave packet. A transient boundary layer is shown to favor planetary-scale instability due to the fractionally created phase shift between the maximum vertical motion and the heating associated with boundary-layer convergence.

The implications of the theory to the basic dynamics of tropical intraseasonal oscillation are discussed.

Full access
Kazuyoshi Kikuchi and Bin Wang

Abstract

Meteorological and geophysical phenomena involve multiple-scale processes. Here the spatiotemporal wavelet transform (STWT) is applied to detect significant, nonstationary, wave propagation signals from a time–space domain. One of the major advantages of the STWT is the capability to localize the wave properties in both space and time, which facilitates the study of interactions among multiple-scale disturbances by providing relevant information about energy concentration at a given time and space. The global wavelet spectrum (scalogram) of the STWT, which gives an integrated view of the spectrum as wavenumber and frequency, provides a lucid picture of the spectral power distribution that is consistent with the result obtained from the Fourier-based space–time power spectrum. The STWT has also the capability of reconstruction and thus can be used as a spatiotemporal wave filter.

The STWT analysis is applied to analyze the multiscale structure of the Madden–Julian oscillation (MJO) studied by Nakazawa. All types of convectively coupled equatorial waves were identified. The analysis results reveal the structural differences between the MJO and Kelvin waves and their different relationships with the embedded westward propagating inertio-gravity (WIG) waves: for the Kelvin wave the enhanced activity of the WIG waves coincides with the most active convective area, whereas for the MJO the enhanced WIG waves occur to the east of the MJO convective center. In addition, the WIG waves in the MJO have shorter wavelengths and periods, but those in the Kelvin waves have longer wavelengths and periods. This difference may hold a key to understanding the propagation speed difference between the MJO and Kelvin waves. The possible “upscale feedback” of the WIG waves on the MJO and Kelvin waves is also discussed.

Full access
Kazuyoshi Kikuchi and Bin Wang

Abstract

The quasi-biweekly oscillation (QBW: here defined as a 12–20-day oscillation) is one of the major systems that affect tropical and subtropical weather and seasonal mean climate. However, knowledge is limited concerning its temporal and spatial structures and dynamics, particularly in a global perspective. To advance understanding of the QBW, its life cycle is documented using a tracking method and extended EOF analysis. Both methods yield consistent results. The analyses reveal a wide variety of QBW activity in terms of initiation, movement, development, and dissipation. The convective anomalies associated with the QBW are predominant in the latitude bands between 10° and 30° in both hemispheres. The QBW modes tend to occur regionally and be associated with monsoons. Three boreal summer modes are identified in the Asia–Pacific, Central America, and subtropical South Pacific regions. Five austral summer modes are identified in the Australia–southwest Pacific, South Africa–Indian Ocean, South America–Atlantic, subtropical North Pacific, and North Atlantic–North Africa regions.

The QBW modes are classified into two categories: westward- and eastward-propagating modes. The westward mode is found in the Asia–Pacific and Central America regions during boreal summer; it originates in the tropics and dissipates in the subtropics. The behavior of the westward-propagating mode can be understood in terms of equatorial Rossby waves in the presence of monsoon mean flow and convective coupling. The eastward-propagating mode, on the other hand, connects with upstream extratropical Rossby wave trains and propagates primarily eastward and equatorward. Barotropic Rossby wave trains play an essential role in controlling initiation, development, and propagation of the eastward QBW mode in the subtropics. The results therefore suggest that not only tropical but also extratropical dynamics are required for fully understanding the behavior of the QBW systems worldwide. The new conceptual picture of QBW obtained here based on long-term observation provides valuable information on the behavior of QBW systems in a global perspective, which is important for a thorough understanding of tropical variability on a time scale between day-to-day weather and the Madden–Julian oscillation.

Full access
Hualan Rui and Bin Wang

Abstract

The development and dynamical structure of intraseasonal low-frequency convection anomalies in the equatorial region are investigated using 10 years (1975–85) of outgoing longwave radiation (OLR) and 7 years (1979–85) of 200 and 850 mb wind data.

The composite OLR anomalies for 36 cases show a four-stage development process: initiation over equatorial Africa, rapid intensification when passing through the Indian Ocean, mature evolution characterized by a weakening in the maritime continent and redevelopment over the western Pacific, and dissipation near the date line in moderate events or emanation from the equator toward North America and southeastern Pacific in strong events.

A noticeable feature in vertical structure is that the 850 mb convergence leads convection and midtropospheric upward motion by about 30 degrees longitude in both developing and mature phases. Equatorial upper- (lower-) level easterly (westerly) anomalies and associated twin anomalous anticyclonic (cyclonic) circulation anomalies couple with equatorial convection anomalies. The wind anomalies, however, generally lag convection anomalies in development and early mature phases, but nearly overlap in late mature phase and slightly lead the convection anomalies in dissipation phase. The upper-level twin cyclonic cells associated with the westerly anomalies in front of the convection travel across eastern Pacific after the convection ceases in the central Pacific, while the low-level wind anomalies die out east of the date line.

The implications of the findings in relation to theoretical hypotheses on low-frequency motion are discussed.

Full access
Li Dong and Bin Wang

Abstract

A Lagrangian linear advection scheme, which is called the trajectory-tracking scheme, is proposed in this paper. The continuous tracer field has been discretized as finite tracer parcels that are points moving with the velocity field. By using the inverse distance weighted interpolation, the density carried by parcels is mapped onto the fixed Eulerian mesh (e.g., regular latitude–longitude mesh on the sphere) where the result is rendered. A renormalization technique has been adopted to accomplish mass conservation on the grids. The major advantage of this scheme is the ability to preserve discontinuity very well. Several standard tests have been carried out, including 1D and 2D Cartesian cases, and 2D spherical cases. The results show that the spurious numerical diffusion has been eliminated, which is a potential merit for the atmospheric modeling.

Full access
Hisayuki Kubota and Bin Wang

Abstract

The authors investigate the effects of tropical cyclones (TCs) on seasonal and interannual rainfall variability over the western North Pacific (WNP) by using rainfall data at 22 stations. The TC-induced rainfall at each station is estimated by using station data when a TC is located within the influential radius (1000 km) from the station. The spatial–temporal variability of the proportion of TC rainfall is examined primarily along the east–west island chain near 10°N (between 7° and 13°N) and the north–south island chain near 125°E (between 120° and 130°E).

Along 10°N the seasonality of total rainfall is mainly determined by non-TC rainfall that is influenced by the WNP monsoon trough. The proportion of the TC rain is relatively low. During the high TC season from July to December, TC rainfall accounts for 30% of the total rainfall in Guam, 15%–23% in Koror and Yap, and less than 10% at other stations. In contrast, along 125°E where the WNP subtropical high is located, the TC rainfall accounts for 50%–60% of the total rainfall between 18° and 26°N during the peak TC season from July to October. In Hualien of Taiwan, TC rainfall exceeds 60% of the total rainfall.

The interannual variability of the TC rainfall and total rainfall is primarily modulated by El Niño–Southern Oscillation (ENSO). Along 10°N, the ratio of TC rainfall versus total rainfall is higher than the climatology during developing and mature phases of El Niño (from March to the following January), whereas the ratio is below the climatology during the decaying phase of El Niño. The opposite is true for La Niña, except that the impact of La Niña is shorter in duration. Furthermore, in summer of El Niño developing years, the total seasonal rainfall increases primarily because of the increase of TC rainfall. In the ensuing autumn, an anticyclonic anomaly develops over the Philippine Sea and TC rainfall shifts eastward; as a result, the total rainfall over the Philippines and Taiwan decreases. The total rainfall to the east of 140°E, however, changes little, because the westward passage of TCs enhances TC rainfall, which offsets the decrease of non-TC rainfall. Along the meridional island chain between 120° and 130°E, the total rainfall anomaly is affected by ENSO starting from the autumn to the following spring, and the variation in TC rainfall dominates the total rainfall variation only in autumn (August–November) of ENSO years.

The results from this study suggest that in the tropical WNP and subtropical East Asian monsoon regions (east of 120°E), the seasonal and interannual variations of rainfall are controlled by changes in nonlocal circulations. These changes outside the monsoon domain may substantially affect summer monsoon rainfall by changing TC genesis and tracks.

Full access
Xiaqiong Zhou and Bin Wang

Abstract

To understand the mechanisms responsible for the secondary eyewall replacement cycles and associated intensity changes in intense tropical cyclones (TCs), two numerical experiments are conducted in this study with the Weather Research and Forecasting (WRF) model. In the experiments, identical initial conditions and model parameters are utilized except that the concentration of ice particles is enhanced in the sensitivity run. With enhanced ice concentrations, it is found that the secondary eyewall forms at an increased radius, the time required for eyewall replacement is extended, and the intensity fluctuation is relatively large. The enhanced concentrations of ice particles at the upper tropospheric outflow layer produces a noticeable subsidence region (moat) surrounding the primary eyewall. The presence of the moat forces the secondary eyewall to form at a relatively large radius. The axisymmetric equivalent potential temperature budget analysis reveals that the demise of the inner eyewall is primarily due to the interception of the boundary layer inflow supply of entropy by the outer convective ring, whereas the advection of low entropy air from the middle levels to the boundary inflow layers in the moat is not essential. The interception process becomes inefficient when the secondary eyewall is at a large radius; hence, the corresponding eyewall replacement is slow. After the demise of the inner eyewall, the outer eyewall has to maintain a warm core not only in the previous eye, but also in the moat. The presence of low equivalent potential temperature air in the moat results in the significant weakening of storm intensity. The results found here suggest that monitoring the features of the moat and the outer eyewall region can provide a clue for the prediction of TC intensity change associated with eyewall replacement.

Full access