Search Results

You are looking at 61 - 70 of 78 items for

  • Author or Editor: John Molinari x
  • All content x
Clear All Modify Search
David J. Raymond, Christopher S. Bretherton, and John Molinari

Abstract

The dynamical factors controlling the mean state and variability of the east Pacific intertropical convergence zone (ITCZ) and the associated cross-equatorial boundary layer flow are investigated using observations from the East Pacific Investigation of Climate (EPIC2001) project. The tropical east Pacific exhibits a southerly boundary layer flow that terminates in the ITCZ. This flow is induced by the strong meridional sea surface temperature (SST) gradient in the region. Away from the equator and from deep convection, it is reasonably well described on a day-to-day basis by an extended Ekman balance model. Variability in the strength and northward extent of this flow is caused by variations in free-tropospheric pressure gradients that either reinforce or oppose the pressure gradient associated with the SST gradient. These free-tropospheric gradients are caused by easterly waves, tropical cyclones, and the Madden–Julian oscillation.

Convergence in the boundary layer flow is often assumed to be responsible for destabilizing the atmosphere to deep convection. An alternative hypothesis is that enhanced total surface heat fluxes associated with high SSTs and strong winds act to produce the necessary destabilization. Analysis of the moist entropy budget of the planetary boundary layer shows that, on average, surface fluxes generate over twice the destabilization produced by boundary layer convergence in the east Pacific ITCZ.

Full access
John Molinari, Jun A. Zhang, Robert F. Rogers, and David Vollaro

Abstract

Hurricane Frances (2004) represented an unusual event that produced three consecutive overlapping eyewall replacement cycles (ERCs). Their evolution followed some aspects of the typical ERC. The strong primary eyewalls contracted and outward-sloping secondary eyewalls formed near 3 times the radius of maximum winds. Over time these secondary eyewalls shifted inward, became more upright, and replaced the primary eyewalls. In other aspects, however, the ERCs in Hurricane Frances differed from previously described composites. The outer eyewall wind maxima became stronger than the inner in only 12 h, versus 25 h for average ERCs. More than 15 m s−1 outflow peaked in the upper troposphere during each ERC. Relative vorticity maxima peaked at the surface but extended to mid- and upper levels. Mean 200-hPa zonal velocity was often from the east, whereas ERC environments typically have zonal flow from the west. These easterlies were produced by an intense upper anticyclone slightly displaced from the center and present throughout the period of multiple ERCs. Inertial stability was low at almost all azimuths at 175 hPa near the 500-km radius during the period of interest. It is hypothesized that the reduced resistance to outflow associated with low inertial stability aloft induced deep upward motion and rapid intensification of the secondary eyewalls. The annular hurricane index of Knaff et al. showed that Hurricane Frances met all the criteria for annular hurricanes, which make up only 4% of all storms. It is argued that the annular hurricane directly resulted from the repeated ERCs following Wang’s reasoning.

Full access
Stephanie N. Stevenson, Kristen L. Corbosiero, and John Molinari

Abstract

The relationship between an inner-core (r < 100 km) lightning outbreak and the subsequent rapid intensification (RI) of Hurricane Earl (2010) is examined using lightning strikes recorded by the World Wide Lightning Location Network (WWLLN) and in situ observations from various aircraft missions. Moderate (8.4 m s−1) northeasterly deep-layer (850–200 hPa) vertical wind shear, caused by outflow from Hurricane Danielle, existed over Earl at the beginning of a prolonged period of RI. Over 70% of the lightning strikes within a 500-km radius occurred downshear, with a preference toward downshear right in the outer rainbands, in agreement with previous studies.

The location of inner-core strikes in Earl differed markedly from previous studies. The inner-core lightning activity precessed from left of shear to upshear, an extremely rare event, beginning just prior to the onset of RI. Diagnosis of the vortex tilt midway through the lightning precession showed this convection was occurring downtilt in the upshear-left quadrant; however, limited observations could not confirm if the vortex tilt was precessing with the lightning. Elevated values of low-level relative humidity and CAPE were also found upshear and supported the inner-core convection, which was found to occur within the radius of maximum wind (RMW). Previous studies have shown that convection located inside the RMW promotes intensification. It is hypothesized that intensification may have occurred in part because the vertical wind shear acted to reduce the upshear tilt, and the occurrence of convection inside the RMW helped to enhance the warm core.

Full access
John C. Swallow, Robert L. Molinari, John G. Bruce, Otis B. Brown, and Robert H. Evans

Abstract

Near-surface observations of temperature, salinity and current are used to describe the seasonal reversal of the Somali Current during 1979, in response to the onset of the southwest monsoon winds. During April, prior to the reversal of the winds north of the equator, the northward flowing East African Coastal Current (EACC) and the southward flowing Somali Current (SC) converged near the equator. The EACC was characterized by surface waters with salinities less than 35.1%, and the SC by salinities greater than 35.3%. The winds reversed north of the equator during the first week of May, and the boundary current intruded in the form of an anticyclonic gyre to 2.5°N. Most of the low-salinity water was recirculated back south of the equator by the offshore limb of the gyre. It did not flow continuously at the surface into the eastward equatorial jet, which was present farther offshore during May and June. That current was fed by high-salinity water from the region to the north of the low-latitude gyre. Surface winds increased dramatically in early June; and subsequently, the gyre intruded farther north and east; recirculation southward across the equator was still observed. A second gyre spun up north of the southern feature, apparently in response to the increase in winds. During July and early August the southern gyre intruded farther north, the northern gyre intensified and the equatorial jet disappeared. The data are inadequate to resolve the rapid changes which occurred in late August. The net result was the replacement of the offshore flow between the equator and 5°N by onshore flow along the equator and advection of low-salinity water from south of the equator to 12°N. The observations are discussed in the context of model results and implications for the redistribution and modification of local water masses.

Full access
Erin M. Dougherty, John Molinari, Robert F. Rogers, Jun A. Zhang, and James P. Kossin

Abstract

Hurricane Bonnie (1998) was an unusually resilient hurricane that maintained a steady-state intensity while experiencing strong (12–16 m s−1) vertical wind shear and an eyewall replacement cycle. This remarkable behavior was examined using observations from flight-level data, microwave imagery, radar, and dropsondes over the 2-day period encompassing these events. Similar to other observed eyewall replacement cycles, Bonnie exhibited the development, strengthening, and dominance of a secondary eyewall while a primary eyewall decayed. However, Bonnie’s structure was highly asymmetric because of the large vertical wind shear, in contrast to the more symmetric structures observed in other hurricanes undergoing eyewall replacement cycles. It is hypothesized that the unusual nature of Bonnie’s evolution arose as a result of an increase in vertical wind shear from 2 to 12 m s−1 even as the storm intensified to a major hurricane in the presence of high ambient sea surface temperatures. These circumstances allowed for the development of outer rainbands with intense convection downshear, where the formation of the outer eyewall commenced. In addition, the circulation broadened considerably during this time. The secondary eyewall developed within a well-defined beta skirt in the radial velocity profile, consistent with an earlier theory. Despite the large ambient vertical wind shear, the outer eyewall steadily extended upshear, supported by 35% larger surface wind speed upshear than downshear. The larger radius of maximum winds during and after the eyewall replacement cycle might have aided Bonnie’s resiliency directly, but also increased the likelihood that diabatic heating would fall inside the radius of maximum winds.

Full access
John Molinari, Peter Dodge, David Vollaro, Kristen L. Corbosiero, and Frank Marks Jr.

Abstract

The downshear reformation of Tropical Storm Gabrielle (2001) was investigated using radar reflectivity and lightning data that were nearly continuous in time, as well as frequent aircraft reconnaissance flights. Initially the storm was a marginal tropical storm in an environment with strong 850–200-hPa vertical wind shear of 12–13 m s−1 and an approaching upper tropospheric trough. Both the observed outflow and an adiabatic balance model calculation showed that the radial-vertical circulation increased with time as the trough approached. Convection was highly asymmetric, with almost all radar return located in one quadrant left of downshear in the storm. Reconnaissance data show that an intense mesovortex formed downshear of the original center. This vortex was located just south of, rather than within, a strong downshear-left lightning outbreak, consistent with tilting of the horizontal vorticity associated with the vertical wind shear. The downshear mesovortex contained a 972-hPa minimum central pressure, 20 hPa lower than minimum pressure in the original vortex just 3 h earlier. The mesovortex became the new center of the storm, but weakened somewhat prior to landfall. It is argued that dry air carried around the storm from the region of upshear subsidence, as well as the direct effects of the shear, prevented the reformed vortex from continuing to intensify.

Despite the subsequent weakening of the reformed center, it reached land with greater intensity than the original center. It is argued that this intensification process was set into motion by the vertical wind shear in the presence of an environment with upward motion forced by the upper tropospheric trough. In addition, the new center formed much closer to the coast and made landfall much earlier than predicted. Such vertical-shear-induced intensity and track fluctuations are important to understand, especially in storms approaching the coast.

Full access
T. N. Krishnamurti, Y. Ramanathan, Hua-Lu Pan, Richard J. Pasch, and John Molinari

Abstract

Modeling of convective rainfall rates is a central problem in tropical meteorology. Toward numerical weather prediction efforts the semi-prognostic approach (i.e., a one time-step prediction of rainfall rates) provides a relevant test of cumulus parameterization methods. In this paper we compare five currently available cumulus parameterization schemes using the semi-prognostic approach. The calculated rainfall rates are compared with observed estimates provided in the recent publication of Hudlow and Patterson (1979). Among these the scheme proposed by Kuo (1974) provides the least root-mean-square error between the calculated and the observed estimates, slightly better than that of Arakawa and Schubert (1974), which was used by Lord (1978a). The simplicity of the approach holds promise for numerical weather prediction. Unlike some of the other schemes this method is not sensitive to and does not require computation of internal parameters such as profiles of cloud mass flux updrafts and downdrafts, detrainment of cloud matter and entrainment of environmental air. The present paper does not address the prognostic evolution and verification of the vertical distribution of temperature, humidity or momentum. These will be compared for the different methods in more detail separately.

Full access
T. N. Krishnamurti, Vince Wong, Hua-Lu Pan, Richard Pasch, John Molinari, and Philip Ardanuy

Abstract

This paper is an extension of an earlier study on the planetary boundary layer dynamics of the low level monsoonal flow over the Arabian Sea (Krishnamurti and Wong, 1979), where the long term steady state motion field for a boundary layer was determined using a zonally symmetric model with a prescribed pressure field. In that study we examined the balance of forces in the surface layer and the planetary boundary layer for regions across the equator, across and along the low-level Somali jet, and across an intertropical convergence zone. The important role of advective accelerations in the near-equatorial balance of forces was demonstrated. The important study is based on a three-dimensional model that removes the restriction of zonal symmetry. This mesoscale fine mesh model, with a horizontal resolution of ∼55 km and a vertical resolution of 200 m, is integrated to examine the evolution of three-dimensional planetary boundary layer flows for prescribed three-dimensional pressure patterns. The observations of the pressure field were obtained from the climatological analysis of Van De Boogaard (1977) and the MONSOON 77 and MONEX 1979 data sets. The results of these long term integrations and the balance of forces are discussed and compared with those inferred from cross-equatorial trajectories of constant level balloons.

Full access
Lance F. Bosart, W. Edward Bracken, John Molinari, Christopher S. Velden, and Peter G. Black

Abstract

Hurricane Opal intensified rapidly and unexpectedly over the Gulf of Mexico between 1800 UTC 3 October and 1000 UTC 4 October 1995. During this period the storm central pressure decreased from 963 to 916 hPa and sustained winds reached 68 m s−1. Analyses that include high-resolution GOES-8 water vapor winds and European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP) gridded datasets are employed to examine the rapid intensification phase of Opal.

Opal first reached tropical storm strength on 29–30 September 1995 as it interacted with a trough while situated over the Yucatan Peninsula. Opal deepened moderately (∼20 hPa) in the 24 h ending 1200 UTC 2 October as it achieved minimal hurricane strength and as it turned northeastward. The deepening occurred in conjunction with an environmental flow interaction as determined by an Eliassen balanced vortex outflow calculation.

As Opal accelerated toward the Gulf coast by 1200 UTC 3 October, it approached the equatorward jet-entrance region of a progressive synoptic-scale trough. The trough tail extended southwestward toward the lower Texas coast. As the poleward portion of the trough moved eastward, the equatorward end of the trough lagged behind, stretched meridionally, and partially fractured as it encountered a deformation region over the northwest Gulf. Enhanced outflow and increased divergence in the upper troposphere poleward of Opal was associated with the deformation zone and the partially fractured trough tail.

An analysis of the 300–200-hPa layer-averaged divergence and 6-h divergence change based on an analysis of the water vapor winds shows a significant increase in the magnitude and equatorward extension of the divergence core toward Opal that begins at 1200 UTC 3 October and is most apparent by 1800 UTC 3 October and 0000 UTC 4 October. This divergence increase is shown to precede convective growth in the eyewall and the onset of rapid intensification and is attributed to a jet–trough–hurricane interaction in a low-shear environment. Calculations of balanced vortex outflow based on the ECMWF and NCEP gridded datasets confirms this interpretation.

A crucial finding of this work is that the jet–trough–hurricane interaction and explosive intensification of Opal begins near 0000 UTC 4 October when the storm is far from its maximum potential intensity (MPI), and the 850–200-hPa shear within 500 km of the center is weak (2–3 m s−1). In this first stage of rapid intensification the winds increase by almost 15 m s−1 to 52 m s−1 prior to the storm reaching an oceanic warm-core eddy. The second stage of rapid intensification occurs between 0600 and 1000 UTC 4 October when Opal is over the warm-core eddy and sustained winds increase to 68 m s−1. During this second stage conditions are still favorable for a jet–trough–hurricane interaction as demonstrated by the balanced vortex outflow calculation. Opal weakens rapidly after 1200 UTC 4 October when the storm is near its MPI, the shear is increasing, and the eye is leaving the warm-core eddy. This weakening occurs as Opal moves closer to the trough. It is suggested that an important factor in determining whether a storm–trough interaction is favorable or unfavorable for intensification is how far a storm is from its MPI. The results suggest that a favorable storm–trough interaction (“good trough”) can occur when a storm is far from its MPI.

It is suggested that although the ECMWF (and to lesser extent NCEP) analyses reveal the trough–jet–hurricane interaction through the balanced vortex outflow calculation, that the failure of the same models to predict the rapid intensification of Opal can be attributed to the inability of the model to resolve the eye and internal strorm structure and the associated influence of the trough–jet–hurricane interaction on the diabatically driven storm secondary circulation. The analyses also indicate that the high spatial and temporal resolution of the GOES-8 water vapor winds reveal important mesoscale details of the trough–jet–hurricane interaction that would otherwise be hidden.

Full access
Sarah D. Ditchek, Kristen L. Corbosiero, Robert G. Fovell, and John Molinari

Abstract

Recent research has found that diurnal pulses are ubiquitous features of tropical cyclones. To gain further insight into the characteristics of these pulses, a case study of an electrically active (ACT) cooling pulse and an off-the-clock ACT cooling pulse that occurred in Hurricane Harvey (2017) was conducted. Using GridSat-B1 IR brightness temperatures, World Wide Lightning Location Network (WWLLN) lightning data, the 85–91-GHz channels on microwave satellite imagers, and Level-II Doppler radar reflectivity data from WSR-88D stations (i.e., NEXRAD), these pulses were found to share many similar characteristics: both propagated outward on the right-of-shear side of Harvey and were associated with elevated cloud ice content and high reflectivity. Additionally, using HRRR model output, both pulses were found to be associated with 1) column-deep total condensate, 2) a surface cold pool, 3) an overturning circulation, and 4) an enhanced low-level jet. These characteristics are similar to those found in tropical squall lines, supporting the tropical squall-line interpretation of diurnal pulses put forth in recent studies. A hypothesis for ACT pulse initiation was then introduced, tested, and confirmed: inner rainbands that propagated outward into a more favorable environment for deep convection reinvigorated into ACT pulses that had tropical squall-line characteristics.

Restricted access