Search Results

You are looking at 61 - 69 of 69 items for

  • Author or Editor: Michael Bell x
  • All content x
Clear All Modify Search
Michael T. Montgomery, Christopher Davis, Timothy Dunkerton, Zhuo Wang, Christopher Velden, Ryan Torn, Sharanya J. Majumdar, Fuqing Zhang, Roger K. Smith, Lance Bosart, Michael M. Bell, Jennifer S. Haase, Andrew Heymsfield, Jorgen Jensen, Teresa Campos, and Mark A. Boothe

The principal hypotheses of a new model of tropical cyclogenesis, known as the marsupial paradigm, were tested in the context of Atlantic tropical disturbances during the National Science Foundation (NSF)-sponsored Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. PREDICT was part of a tri-agency collaboration, along with the National Aeronautics and Space Administration's Genesis and Rapid Intensification Processes (NASA GRIP) experiment and the National Oceanic and Atmospheric Administration's Intensity Forecasting Experiment (NOAA IFEX), intended to examine both developing and nondeveloping tropical disturbances.

During PREDICT, a total of 26 missions were flown with the NSF/NCAR Gulfstream V (GV) aircraft sampling eight tropical disturbances. Among these were four cases (Fiona, ex-Gaston, Karl, and Matthew) for which three or more missions were conducted, many on consecutive days. Because of the scientific focus on the Lagrangian nature of the tropical cyclogenesis process, a wave-relative frame of reference was adopted throughout the experiment in which various model- and satellite-based products were examined to guide aircraft planning and real-time operations. Here, the scientific products and examples of data collected are highlighted for several of the disturbances. The suite of cases observed represents arguably the most comprehensive, self-consistent dataset ever collected on the environment and mesoscale structure of developing and nondeveloping predepression disturbances.

Full access
Jesse E. Bell, Michael A. Palecki, C. Bruce Baker, William G. Collins, Jay H. Lawrimore, Ronald D. Leeper, Mark E. Hall, John Kochendorfer, Tilden P. Meyers, Tim Wilson, and Howard J. Diamond


The U.S. Climate Reference Network (USCRN) is a network of climate-monitoring stations maintained and operated by the National Oceanic and Atmospheric Administration (NOAA) to provide climate-science-quality measurements of air temperature and precipitation. The stations in the network were designed to be extensible to other missions, and the National Integrated Drought Information System program determined that the USCRN could be augmented to provide observations that are more drought relevant. To increase the network’s capability of monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In 2011, the USCRN team completed at each USCRN station in the conterminous United States the installation of triplicate-configuration soil moisture and soil temperature probes at five standards depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization; in addition, the project included the installation of a relative humidity sensor at each of the stations. Work is also under way to eventually install soil sensors at the expanding USCRN stations in Alaska. USCRN data are stewarded by the NOAA National Climatic Data Center, and instrument engineering and performance studies, installation, and maintenance are performed by the NOAA Atmospheric Turbulence and Diffusion Division. This article provides a technical description of the USCRN soil observations in the context of U.S. soil-climate–measurement efforts and discusses the advantage of the triple-redundancy approach applied by the USCRN.

Restricted access
Pedro L. Fernández-Cabán, A. Addison Alford, Martin J. Bell, Michael I. Biggerstaff, Gordon D. Carrie, Brian Hirth, Karen Kosiba, Brian M. Phillips, John L. Schroeder, Sean M. Waugh, Eric Williford, Joshua Wurman, and Forrest J. Masters


While Hurricane Harvey will best be remembered for record rainfall that led to widespread flooding in southeastern Texas and western Louisiana, the storm also produced some of the most extreme wind speeds ever to be captured by an adaptive mesonet at landfall. This paper describes the unique tools and the strategy used by the Digital Hurricane Consortium (DHC), an ad hoc group of atmospheric scientists and wind engineers, to intercept and collect high-resolution measurements of Harvey’s inner core and eyewall as it passed over Aransas Bay into mainland Texas. The DHC successfully deployed more than 25 observational assets, leading to an unprecedented view of the boundary layer and winds aloft in the eyewall of a major hurricane at landfall. Analysis of anemometric measurements and mobile radar data during heavy convection shows the kinematic structure of the hurricane at landfall and the suspected influence of circulations aloft on surface winds and extreme surface gusts. Evidence of mesoscale vortices in the interior of the eyewall is also presented. Finally, the paper reports on an atmospheric sounding in the inner eyewall that produced an exceptionally large and potentially record value of precipitable water content for observed soundings in the continental United States.

Open access
Jay H. Lawrimore, Michael S. Halpert, Gerald D. Bell, Matthew J. Menne, Bradfield Lyon, Russell C. Schnell, Karin L. Gleason, David R. Easterling, Wasila Thiaw, William J. Wrightand, Richard R. Heim Jr., David A. Robinson, and Lisa Alexander

The global climate in 2000 was again influenced by the long-running Pacific cold episode (La Niña) that began in mid-1998. Consistent with past cold episodes, enhanced convection occurred across the climatologically convective regions of Indonesia and the western equatorial Pacific, while convection was suppressed in the central Pacific. The La Niña was also associated with a well-defined African easterly jet located north of its climatological mean position and low vertical wind shear in the tropical Atlantic and Caribbean, both of which contributed to an active North Atlantic hurricane season. Precipitation patterns influenced by typical La Niña conditions included 1) above-average rainfall in southeastern Africa, 2) unusually heavy rainfall in northern and central regions of Australia, 3) enhanced precipitation in the tropical Indian Ocean and western tropical Pacific, 4) little rainfall in the central tropical Pacific, 5) below-normal precipitation over equatorial east Africa, and 6) drier-than-normal conditions along the Gulf coast of the United States.

Although no hurricanes made landfall in the United States in 2000, another active North Atlantic hurricane season featured 14 named storms, 8 of which became hurricanes, with 3 growing to major hurricane strength. All of the named storms over the North Atlantic formed during the August–October period with the first hurricane of the season, Hurricane Alberto, notable as the third-longest-lived tropical system since reliable records began in 1945. The primary human loss during the 2000 season occurred in Central America, where Hurricane Gordon killed 19 in Guatemala, and Hurricane Keith killed 19 in Belize and caused $200 million dollars of damage.

Other regional events included 1) record warm January–October temperatures followed by record cold November–December temperatures in the United States, 2) extreme drought and widespread wildfires in the southern and western Unites States, 3) continued long-term drought in the Hawaiian Islands throughout the year with record 24-h rainfall totals in November, 4) deadly storms and flooding in western Europe in October, 5) a summer heat wave and drought in southern Europe, 6) monsoon flooding in parts of Southeast Asia and India, 7) extreme winter conditions in Mongolia, 8) extreme long-term drought in the Middle East and Southwest Asia, and 9) severe flooding in southern Africa.

Global mean temperatures remained much above average in 2000. The average land and ocean temperature was 0.39°C above the 1880–1999 long-term mean, continuing a trend to warmer-than-average temperatures that made the 1990s the warmest decade on record. While the persistence of La Niña conditions in 2000 was associated with somewhat cooler temperatures in the Tropics, temperatures in the extratropics remained near record levels. Land surface temperatures in the high latitudes of the Northern Hemisphere were notably warmer than normal, with annually averaged anomalies greater than 2°C in parts of Alaska, Canada, Asia, and northern Europe.

Full access
Evan A. Kalina, Sergey Y. Matrosov, Joseph J. Cione, Frank D. Marks, Jothiram Vivekanandan, Robert A. Black, John C. Hubbert, Michael M. Bell, David E. Kingsmill, and Allen B. White


Dual-polarization scanning radar measurements, air temperature soundings, and a polarimetric radar-based particle identification scheme are used to generate maps and probability density functions (PDFs) of the ice water path (IWP) in Hurricanes Arthur (2014) and Irene (2011) at landfall. The IWP is separated into the contribution from small ice (i.e., ice crystals), termed small-particle IWP, and large ice (i.e., graupel and snow), termed large-particle IWP. Vertically profiling radar data from Hurricane Arthur suggest that the small ice particles detected by the scanning radar have fall velocities mostly greater than 0.25 m s−1 and that the particle identification scheme is capable of distinguishing between small and large ice particles in a mean sense. The IWP maps and PDFs reveal that the total and large-particle IWPs range up to 10 kg m−2, with the largest values confined to intense convective precipitation within the rainbands and eyewall. Small-particle IWP remains mostly <4 kg m−2, with the largest small-particle IWP values collocated with maxima in the total IWP. PDFs of the small-to-total IWP ratio have shapes that depend on the precipitation type (i.e., intense convective, stratiform, or weak-echo precipitation). The IWP ratio distribution is narrowest (broadest) in intense convective (weak echo) precipitation and peaks at a ratio of about 0.1 (0.3).

Full access
Robert A. Houze Jr., Shuyi S. Chen, Wen-Chau Lee, Robert F. Rogers, James A. Moore, Gregory J. Stossmeister, Michael M. Bell, Jasmine Cetrone, Wei Zhao, and S. Rita Brodzik

The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high-resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the Electra Doppler Radar (ELDORA) on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from tropical depression to category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated in this article by a preliminary analysis of Hurricane Rita, which was documented by multiaircraft flights on five days 1) while a tropical storm, 2) while rapidly intensifying to a category 5 hurricane, 3) during an eye-wall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

Full access
Kathy Pegion, Ben P. Kirtman, Emily Becker, Dan C. Collins, Emerson LaJoie, Robert Burgman, Ray Bell, Timothy DelSole, Dughong Min, Yuejian Zhu, Wei Li, Eric Sinsky, Hong Guan, Jon Gottschalck, E. Joseph Metzger, Neil P Barton, Deepthi Achuthavarier, Jelena Marshak, Randal D. Koster, Hai Lin, Normand Gagnon, Michael Bell, Michael K. Tippett, Andrew W. Robertson, Shan Sun, Stanley G. Benjamin, Benjamin W. Green, Rainer Bleck, and Hyemi Kim


The Subseasonal Experiment (SubX) is a multimodel subseasonal prediction experiment designed around operational requirements with the goal of improving subseasonal forecasts. Seven global models have produced 17 years of retrospective (re)forecasts and more than a year of weekly real-time forecasts. The reforecasts and forecasts are archived at the Data Library of the International Research Institute for Climate and Society, Columbia University, providing a comprehensive database for research on subseasonal to seasonal predictability and predictions. The SubX models show skill for temperature and precipitation 3 weeks ahead of time in specific regions. The SubX multimodel ensemble mean is more skillful than any individual model overall. Skill in simulating the Madden–Julian oscillation (MJO) and the North Atlantic Oscillation (NAO), two sources of subseasonal predictability, is also evaluated, with skillful predictions of the MJO 4 weeks in advance and of the NAO 2 weeks in advance. SubX is also able to make useful contributions to operational forecast guidance at the Climate Prediction Center. Additionally, SubX provides information on the potential for extreme precipitation associated with tropical cyclones, which can help emergency management and aid organizations to plan for disasters.

Free access
Stephen Baxter, Gerald D Bell, Eric S Blake, Francis G Bringas, Suzana J Camargo, Lin Chen, Caio A. S Coelho, Ricardo Domingues, Stanley B Goldenberg, Gustavo Goni, Nicolas Fauchereau, Michael S Halpert, Qiong He, Philip J Klotzbach, John A Knaff, Michelle L'Heureux, Chris W Landsea, I.-I Lin, Andrew M Lorrey, Jing-Jia Luo, Andrew D Magee, Richard J Pasch, Petra R Pearce, Alexandre B Pezza, Matthew Rosencrans, Blair C Trewin, Ryan E Truchelut, Bin Wang, H Wang, Kimberly M Wood, and John-Mark Woolley
Full access
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang


Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access