Search Results

You are looking at 61 - 70 of 70 items for

  • Author or Editor: Robert H. Johns x
  • All content x
Clear All Modify Search
Greg M. McFarquhar, Chris Bretherton, Roger Marchand, Alain Protat, Paul J. DeMott, Simon P. Alexander, Greg C. Roberts, Cynthia H. Twohy, Darin Toohey, Steve Siems, Yi Huang, Robert Wood, Robert M. Rauber, Sonia Lasher-Trapp, Jorgen Jensen, Jeff Stith, Jay Mace, Junshik Um, Emma Järvinen, Martin Schnaiter, Andrew Gettelman, Kevin J. Sanchez, Christina S. McCluskey, Lynn M. Russell, Isabel L. McCoy, Rachel Atlas, Charles G. Bardeen, Kathryn A. Moore, Thomas C. J. Hill, Ruhi S. Humphries, Melita D. Keywood, Zoran Ristovski, Luke Cravigan, Robyn Schofield, Chris Fairall, Marc D. Mallet, Sonia M. Kreidenweis, Bryan Rainwater, John D’Alessandro, Yang Wang, Wei Wu, Georges Saliba, Ezra J. T. Levin, Saisai Ding, Francisco Lang, Son C.H. Truong, Cory Wolff, Julie Haggerty, Mike J. Harvey, Andrew Klekociuk, and Adrian McDonald

Abstract

Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons.

Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.

Full access
Faisal Hossain, Margaret Srinivasan, Craig Peterson, Alice Andral, Ed Beighley, Eric Anderson, Rashied Amini, Charon Birkett, David Bjerklie, Cheryl Ann Blain, Selma Cherchali, Cédric H. David, Bradley Doorn, Jorge Escurra, Lee-Lueng Fu, Chris Frans, John Fulton, Subhrendu Gangopadhay, Subimal Ghosh, Colin Gleason, Marielle Gosset, Jessica Hausman, Gregg Jacobs, John Jones, Yasir Kaheil, Benoit Laignel, Patrick Le Moigne, Li Li, Fabien Lefèvre, Robert Mason, Amita Mehta, Abhijit Mukherjee, Anthony Nguy-Robertson, Sophie Ricci, Adrien Paris, Tamlin Pavelsky, Nicolas Picot, Guy Schumann, Sudhir Shrestha, Pierre-Yves Le Traon, and Eric Trehubenko
Open access
Qing Wang, Denny P. Alappattu, Stephanie Billingsley, Byron Blomquist, Robert J. Burkholder, Adam J. Christman, Edward D. Creegan, Tony de Paolo, Daniel P. Eleuterio, Harindra Joseph S. Fernando, Kyle B. Franklin, Andrey A. Grachev, Tracy Haack, Thomas R. Hanley, Christopher M. Hocut, Teddy R. Holt, Kate Horgan, Haflidi H. Jonsson, Robert A. Hale, John A. Kalogiros, Djamal Khelif, Laura S. Leo, Richard J. Lind, Iossif Lozovatsky, Jesus Planella-Morato, Swagato Mukherjee, Wendell A. Nuss, Jonathan Pozderac, L. Ted Rogers, Ivan Savelyev, Dana K. Savidge, R. Kipp Shearman, Lian Shen, Eric Terrill, A. Marcela Ulate, Qi Wang, R. Travis Wendt, Russell Wiss, Roy K. Woods, Luyao Xu, Ryan T. Yamaguchi, and Caglar Yardim

Abstract

The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.

Open access
Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d'Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael Degrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit De Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig Mcneil, James B. Mcquaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O'Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink

Abstract

No Abstract available.

Full access
Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d'Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael DeGrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit de Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig McNeil, James B. McQuaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O'Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access
Suranjana Saha, Shrinivas Moorthi, Hua-Lu Pan, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, Robert Kistler, John Woollen, David Behringer, Haixia Liu, Diane Stokes, Robert Grumbine, George Gayno, Jun Wang, Yu-Tai Hou, Hui-ya Chuang, Hann-Ming H. Juang, Joe Sela, Mark Iredell, Russ Treadon, Daryl Kleist, Paul Van Delst, Dennis Keyser, John Derber, Michael Ek, Jesse Meng, Helin Wei, Rongqian Yang, Stephen Lord, Huug van den Dool, Arun Kumar, Wanqiu Wang, Craig Long, Muthuvel Chelliah, Yan Xue, Boyin Huang, Jae-Kyung Schemm, Wesley Ebisuzaki, Roger Lin, Pingping Xie, Mingyue Chen, Shuntai Zhou, Wayne Higgins, Cheng-Zhi Zou, Quanhua Liu, Yong Chen, Yong Han, Lidia Cucurull, Richard W. Reynolds, Glenn Rutledge, and Mitch Goldberg

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.

CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.

Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.

Full access
J. K. Andersen, Liss M. Andreassen, Emily H. Baker, Thomas J. Ballinger, Logan T. Berner, Germar H. Bernhard, Uma S. Bhatt, Jarle W. Bjerke, Jason E. Box, L. Britt, R. Brown, David Burgess, John Cappelen, Hanne H. Christiansen, B. Decharme, C. Derksen, D. S. Drozdov, Howard E. Epstein, L. M. Farquharson, Sinead L. Farrell, Robert S. Fausto, Xavier Fettweis, Vitali E. Fioletov, Bruce C. Forbes, Gerald V. Frost, Sebastian Gerland, Scott J. Goetz, Jens-Uwe Grooß, Edward Hanna, Inger Hanssen-Bauer, Stefan Hendricks, Iolanda Ialongo, K. Isaksen, Bjørn Johnsen, L. Kaleschke, A. L. Kholodov, Seong-Joong Kim, Jack Kohler, Zachary Labe, Carol Ladd, Kaisa Lakkala, Mark J. Lara, Bryant Loomis, Bartłomiej Luks, K. Luojus, Matthew J. Macander, G. V. Malkova, Kenneth D. Mankoff, Gloria L. Manney, J. M. Marsh, Walt Meier, Twila A. Moon, Thomas Mote, L. Mudryk, F. J. Mueter, Rolf Müller, K. E. Nyland, Shad O’Neel, James E. Overland, Don Perovich, Gareth K. Phoenix, Martha K. Raynolds, C. H. Reijmer, Robert Ricker, Vladimir E. Romanovsky, E. A. G. Schuur, Martin Sharp, Nikolai I. Shiklomanov, C. J. P. P. Smeets, Sharon L. Smith, Dimitri A. Streletskiy, Marco Tedesco, Richard L. Thoman, J. T. Thorson, X. Tian-Kunze, Mary-Louise Timmermans, Hans Tømmervik, Mark Tschudi, Dirk van As, R. S. W. van de Wal, Donald A. Walker, John E. Walsh, Muyin Wang, Melinda Webster, Øyvind Winton, Gabriel J. Wolken, K. Wood, Bert Wouters, and S. Zador
Full access
Maurice Blackmon, Byron Boville, Frank Bryan, Robert Dickinson, Peter Gent, Jeffrey Kiehl, Richard Moritz, David Randall, Jagadish Shukla, Susan Solomon, Gordon Bonan, Scott Doney, Inez Fung, James Hack, Elizabeth Hunke, James Hurrell, John Kutzbach, Jerry Meehl, Bette Otto-Bliesner, R. Saravanan, Edwin K. Schneider, Lisa Sloan, Michael Spall, Karl Taylor, Joseph Tribbia, and Warren Washington

The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users.

The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a “flux coupler” that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1 % per year.

In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several projections of the climate of the twenty-first century.

The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model.

Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.

Full access
Taneil Uttal, Sandra Starkweather, James R. Drummond, Timo Vihma, Alexander P. Makshtas, Lisa S. Darby, John F. Burkhart, Christopher J. Cox, Lauren N. Schmeisser, Thomas Haiden, Marion Maturilli, Matthew D. Shupe, Gijs De Boer, Auromeet Saha, Andrey A. Grachev, Sara M. Crepinsek, Lori Bruhwiler, Barry Goodison, Bruce McArthur, Von P. Walden, Edward J. Dlugokencky, P. Ola G. Persson, Glen Lesins, Tuomas Laurila, John A. Ogren, Robert Stone, Charles N. Long, Sangeeta Sharma, Andreas Massling, David D. Turner, Diane M. Stanitski, Eija Asmi, Mika Aurela, Henrik Skov, Konstantinos Eleftheriadis, Aki Virkkula, Andrew Platt, Eirik J. Førland, Yoshihiro Iijima, Ingeborg E. Nielsen, Michael H. Bergin, Lauren Candlish, Nikita S. Zimov, Sergey A. Zimov, Norman T. O’Neill, Pierre F. Fogal, Rigel Kivi, Elena A. Konopleva-Akish, Johannes Verlinde, Vasily Y. Kustov, Brian Vasel, Viktor M. Ivakhov, Yrjö Viisanen, and Janet M. Intrieri

Abstract

International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.

Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access