Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Amanda Anderson x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Sheldon Drobot, Amanda R. S. Anderson, Crystal Burghardt, and Paul Pisano

In 2008, the American Meteorological Society (AMS) Board on Enterprise Planning (BEP) established the Committee on Mobile Observations to discuss the application and utilization of mobile weather and road condition data in the context of supporting the weather and transportation communities and how these data could be used to improve safety and mobility across the nation's surface transportation system. The goal of the committee is to articulate a clear vision for mobile data that captures the immense opportunities for these data to improve road weather services and transportation safety and mobility. The Committee on Mobile Observations is engaged in numerous activities to accomplish its goal, which includes a nationwide survey of the traveling public to obtain better information on their preferences for and interests in obtaining weather and road condition information, their willingness to share vehicle data, and their willingness to pay for enhanced services. This paper outlines the results of the survey. Working through Survey Sampling International, the survey obtained 1627 responses. Results show that people are strongly interested in obtaining road weather information, though they remain wary of sharing data, and they are disinclined to pay for the data. Stratifications note some regional differences in the level of interest in data, as well as dependencies between the amount of information desired, and the willingness to pay for it and to share vehicle information.

Full access
Curtis L. Walker, Brenda Boyce, Christopher P. Albrecht, and Amanda Siems-Anderson


Innovative technologies that support implementation of automated vehicles continue to develop at a rapid pace. These advances strive to increase efficiency and safety throughout the global transportation network. One important challenge to these emergent technologies that remains underappreciated is how the vehicles will perform in adverse weather. Each year, weather-related vehicular crashes account for approximately 21% of all highway crashes in the United States. These crashes result in over 5,300 fatalities, injure over 418,000 people, and cost billions of dollars in insurance claims, liability, emergency services, congestion delays, rehabilitation, and environmental damage annually. Automated vehicles have the potential to significantly mitigate these statistics; however, public, private, and academic partnerships between the meteorological and transportation communities must be established to develop solutions to weather impacts now. To date, such interactions have been sparse and largely contribute to a lack of awareness in how these two communities may collaborate together. The purpose of this manuscript is to call the meteorological community to action and proactive engagement with the transportation community. A secondary goal is to make the transportation community aware of the advantages of teaming with the weather enterprise. Automated vehicles will not only increase travel safety, but also have benefits to the meteorological community through increasing availability of high-resolution surface data observations. The future challenges of these emergent technologies in the context of road weather implications focus on vehicle situational awareness and technological sensing capability in all weather conditions, and transforming how drivers and vehicles are informed of weather threats beyond sensing capabilities.

Full access
David Gochis, Russ Schumacher, Katja Friedrich, Nolan Doesken, Matt Kelsch, Juanzhen Sun, Kyoko Ikeda, Daniel Lindsey, Andy Wood, Brenda Dolan, Sergey Matrosov, Andrew Newman, Kelly Mahoney, Steven Rutledge, Richard Johnson, Paul Kucera, Pat Kennedy, Daniel Sempere-Torres, Matthias Steiner, Rita Roberts, Jim Wilson, Wei Yu, V. Chandrasekar, Roy Rasmussen, Amanda Anderson, and Barbara Brown


During the second week of September 2013, a seasonally uncharacteristic weather pattern stalled over the Rocky Mountain Front Range region of northern Colorado bringing with it copious amounts of moisture from the Gulf of Mexico, Caribbean Sea, and the tropical eastern Pacific Ocean. This feed of moisture was funneled toward the east-facing mountain slopes through a series of mesoscale circulation features, resulting in several days of unusually widespread heavy rainfall over steep mountainous terrain. Catastrophic flooding ensued within several Front Range river systems that washed away highways, destroyed towns, isolated communities, necessitated days of airborne evacuations, and resulted in eight fatalities. The impacts from heavy rainfall and flooding were felt over a broad region of northern Colorado leading to 18 counties being designated as federal disaster areas and resulting in damages exceeding $2 billion (U.S. dollars). This study explores the meteorological and hydrological ingredients that led to this extreme event. After providing a basic timeline of events, synoptic and mesoscale circulation features of the event are discussed. Particular focus is placed on documenting how circulation features, embedded within the larger synoptic flow, served to funnel moist inflow into the mountain front driving several days of sustained orographic precipitation. Operational and research networks of polarimetric radar and surface instrumentation were used to evaluate the cloud structures and dominant hydrometeor characteristics. The performance of several quantitative precipitation estimates, quantitative precipitation forecasts, and hydrological forecast products are also analyzed with the intention of identifying what monitoring and prediction tools worked and where further improvements are needed.

Full access
Paolo M. Ruti, Oksana Tarasova, Julia H. Keller, Greg Carmichael, Øystein Hov, Sarah C. Jones, Deon Terblanche, Cheryl Anderson-Lefale, Ana P. Barros, Peter Bauer, Véronique Bouchet, Guy Brasseur, Gilbert Brunet, Phil DeCola, Victor Dike, Mariane Diop Kane, Christopher Gan, Kevin R. Gurney, Steven Hamburg, Wilco Hazeleger, Michel Jean, David Johnston, Alastair Lewis, Peter Li, Xudong Liang, Valerio Lucarini, Amanda Lynch, Elena Manaenkova, Nam Jae-Cheol, Satoru Ohtake, Nadia Pinardi, Jan Polcher, Elizabeth Ritchie, Andi Eka Sakya, Celeste Saulo, Amith Singhee, Ardhasena Sopaheluwakan, Andrea Steiner, Alan Thorpe, and Moeka Yamaji


Whether on an urban or planetary scale, covering time scales of a few minutes or a few decades, the societal need for more accurate weather, climate, water, and environmental information has led to a more seamless thinking across disciplines and communities. This challenge, at the intersection of scientific research and society’s need, is among the most important scientific and technological challenges of our time. The “Science Summit on Seamless Research for Weather, Climate, Water, and Environment” organized by the World Meteorological Organization (WMO) in 2017, has brought together researchers from a variety of institutions for a cross-disciplinary exchange of knowledge and ideas relating to seamless Earth system science. The outcomes of the Science Summit, and the interactions it sparked, highlight the benefit of a seamless Earth system science approach. Such an approach has the potential to break down artificial barriers that may exist due to different observing systems, models, time and space scales, and compartments of the Earth system. In this context, the main future challenges for research infrastructures have been identified. A value cycle approach has been proposed to guide innovation in seamless Earth system prediction. The engagement of researchers, users, and stakeholders will be crucial for the successful development of a seamless Earth system science that meets the needs of society.

Free access