Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Axel Kleidon x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Axel Kleidon

Abstract

Two inverse methods are applied to a land surface model to infer global patterns of the hydrologically active depth of the vegetation's rooting zone. The first method is based on the assumption that vegetation is optimally adapted to its environment, resulting in a maximization of net carbon uptake [net primary production (NPP)]. This method is implemented by adjusting the depth such that the simulated NPP of the model is at a maximum. The second method assumes that water availability directly affects the leaf area of the vegetation, and therefore the amount of absorbed photosynthetically active radiation (APAR). Rooting depth in the model is adjusted such that the mismatch between simulated and satellite-derived APAR is at a minimum. The inferred patterns of rooting zone depth from both methods correspond well and reproduce the broad patterns of rooting depth derived from observations. Comparison to rooting depth estimates from root biomass distributions point out that these may underestimate the hydrological significance of deep rooted vegetation in the Tropics with potential consequences for large-scale land surface and climate model simulations.

Full access
Klaus Fraedrich, Axel Kleidon, and Frank Lunkeit

Abstract

The effect of vegetation extremes on the general circulation is estimated by two atmospheric GCM simulations using global desert and forest boundary conditions over land. The difference between the climates of a “green planet” and a “desert world” is dominated by the changes of the hydrological cycle, which is intensified substantially. Enhanced evapotranspiration over land reduces the near-surface temperatures; enhanced precipitation leads to a warmer mid- and upper troposphere extending from the subtropics (induced by ITCZ, monsoon, and Hadley cell dynamics) to the midlatitudes (over the cyclogenesis area of Northern Hemisphere storm tracks). These regional changes of the surface water and energy balances, and of the atmospheric circulation, have potential impact on the ocean and the atmospheric greenhouse.

Full access