Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Bo Huang x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Bo Huang and Xuguang Wang

Abstract

Valid-time-shifting (VTS) ensembles, either in the form of full ensemble members (VTSM) or ensemble perturbations (VTSP), were investigated as inexpensive means to increase ensemble size in the NCEP Global Forecast System (GFS) hybrid four-dimensional ensemble–variational (4DEnVar) data assimilation system. VTSM is designed to sample timing and/or phase errors, while VTSP can eliminate spurious covariances through temporal smoothing. When applying a shifting time interval (τ = 1, 2, or 3 h), VTSM and VTSP triple the baseline background ensemble size from 80 (ENS80) to 240 (ENS240) in the EnVar variational update, where the overall cost is only increased by 23%–27%, depending on the selected τ. Experiments during a 10-week summer period show the best-performing VTSP with τ = 2 h improves global temperature and wind forecasts out to 5 days over ENS80. This could be attributed to the improved background ensemble distribution, ensemble correlation accuracy, and increased effective rank in the populated background ensemble. VTSM generally degrades global forecasts in the troposphere. Improved global forecasts above 100 hPa by VTSM may benefit from the increased spread that alleviates the underdispersiveness of the original background ensemble at such levels. Both VTSM and VTSP improve tropical cyclone track forecasts over ENS80. Although VTSM and VTSP are much less expensive than directly running a 240-member background ensemble, owing to the improved ensemble covariances, the best-performing VTSP with τ = 1 h performs comparably or only slightly worse than ENS240. The best-performing VTSM with τ = 3 h even shows more accurate track forecasts than ENS240, likely contributed to by its better sampling of timing and/or phase errors for cases with small ensemble track spread.

Full access
Bo Huang, Xuguang Wang, and Craig H. Bishop

Abstract

The ensemble Kalman filter is typically implemented either by applying the localization on the background error covariance matrix (B-localization) or by inflating the observation error variances (R-localization). A mathematical demonstration suggests that for the same effective localization function, the background error covariance matrix from the B-localization method shows a higher rank than the R-localization method. The B-localization method is realized in the ensemble transform Kalman filter (ETKF) by extending the background ensemble perturbations through modulation (MP-localization). Specifically, the modulation functions are constructed from the leading eigenvalues and eigenvectors of the original B-localization matrix. Because of its higher rank than the classic R-localized ETKF, the B-/MP-localized ETKF is termed as the high-rank ETKF (HETKF). The performances of the HETKF and R-localized ETKF were compared through cycled data assimilation experiments using the Lorenz model II. The results show that the HETKF outperforms the R-localized ETKF especially for a small ensemble. The improved analysis in the HETKF is likely associated with the higher rank from the B-/MP-localization method, since its higher rank is expected to contribute more positively to alleviating the rank deficiency issue and thus improve the analysis for a small ensemble. The HETKF is less sensitive to the localization length scales and inflation factors. Furthermore, the experiments suggest that the above conclusion comparing the HETKF and R-localized ETKF does not depend on how the analyzed ensemble perturbations are subselected in the HETKF.

Full access
Craig H. Bishop, Bo Huang, and Xuguang Wang

Abstract

A consistent hybrid ensemble filter (CHEF) for using hybrid forecast error covariance matrices that linearly combine aspects of both climatological and flow-dependent matrices within a nonvariational ensemble data assimilation scheme is described. The CHEF accommodates the ensemble data assimilation enhancements of (i) model space ensemble covariance localization for satellite data assimilation and (ii) Hodyss’s method for improving accuracy using ensemble skewness. Like the local ensemble transform Kalman filter (LETKF), the CHEF is computationally scalable because it updates local patches of the atmosphere independently of others. Like the sequential ensemble Kalman filter (EnKF), it serially assimilates batches of observations and uses perturbed observations to create ensembles of analyses. It differs from the deterministic (no perturbed observations) ensemble square root filter (ESRF) and the EnKF in that (i) its analysis correction is unaffected by the order in which observations are assimilated even when localization is required, (ii) it uses accurate high-rank solutions for the posterior error covariance matrix to serially assimilate observations, and (iii) it accommodates high-rank hybrid error covariance models. Experiments were performed to assess the effect on CHEF and ESRF analysis accuracy of these differences. In the case where both the CHEF and the ESRF used tuned localized ensemble covariances for the forecast error covariance model, the CHEF’s advantage over the ESRF increased with observational density. In the case where the CHEF used a hybrid error covariance model but the ESRF did not, the CHEF had a substantial advantage for all observational densities.

Full access
Bo Huang, Xuguang Wang, Daryl T. Kleist, and Ting Lei

Abstract

A scale-dependent localization (SDL) method was formulated and implemented in the Gridpoint Statistical Interpolation (GSI)-based four-dimensional ensemble-variational (4DEnVar) system for NCEP FV3-based Global Forecast System (GFS). SDL applies different localization to different scales of ensemble covariances, while performing a single-step simultaneous assimilation of all available observations. Two SDL variants with (SDL-Cross) and without (SDL-NoCross) considering cross-wave-band covariances were examined. The performance of two- and three-wave-band SDL experiments (W2 and W3, respectively) was evaluated through 1-month cycled data assimilation experiments. SDL improves global forecasts to 5 days over scale-invariant localization including the operationally tuned level-dependent scale-invariant localization (W1-Ope). The W3 SDL-Cross experiment shows more accurate tropical storm–track forecasts at shorter lead times than W1-Ope. Compared to the W2 SDL experiments, the W3 SDL counterparts applying tighter horizontal localization at medium-scale wave band generally show improved global forecasts below 100 hPa, but degraded global forecasts above 50 hPa. While the outperformance of the W3 SDL-NoCross experiment versus the W2 SDL-NoCross experiment below 100 hPa lasts for 5 days, that of the W3 SDL-Cross experiment versus the W2 SDL-Cross experiment lasts for 3 days. Due to local spatial averaging of ensemble covariances that may alleviate sampling error, the SDL-NoCross experiments show slightly better forecasts than the SDL-Cross experiments at shorter lead times. However, the SDL-Cross experiments outperform the SDL-NoCross experiments at longer lead times, likely from retention of more heterogeneity of ensemble covariances and resultant analyses with improved balance. Relative performance of tropical storm–track forecasts in the W2 and W3 SDL experiments are generally consistent with that of global forecasts.

Restricted access