Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Bowen Zhang x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Xiaomin Chen, Ming Xue, Bowen Zhou, Juan Fang, Jun A. Zhang, and Frank D. Marks


Horizontal grid spacings of numerical weather prediction models are rapidly approaching O (1 km) and have become comparable with the dominant length scales of flows in the boundary layer; within such “gray-zone”, conventional planetary boundary layer (PBL) parameterization schemes start to violate basic design assumptions. Scale-aware PBL schemes have been developed recently to address the gray-zone issue. By performing WRF simulations of Hurricane Earl (2010) at sub-kilometer grid spacings, this study investigates the effect of the scale-aware Shin-Hong (SH) scheme on the tropical cyclone (TC) intensification and structural changes in comparison to the non-scale-aware YSU scheme it is built upon. Results indicate that SH tends to produce a stronger TC with a more compact inner core than YSU. At early stages, the scale-aware coefficients in SH gradually decrease as the diagnosed boundary layer height exceeds the horizontal grid spacing. This scale-aware effect is most prominent for the nonlocal subgrid-scale vertical turbulent fluxes, in the non-precipitation regions radially outside of the convective rainband, and from the early stage through the middle of rapid intensification (RI) phase. Both the scale awareness and different parameterization of the nonlocal turbulent heat flux in SH reduce the parameterized vertical turbulent mixing, which further induces stronger radial inflows and helps retain more water vapor in the boundary layer. The resulting stronger moisture convergence and diabatic heating near the TC center account for the faster inner-core contraction before RI onset and the higher intensification rate during the RI period. Potential issues of applying these two PBL schemes in TC simulations and suggestions for improvements are discussed.

Restricted access