Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Catherine Prigent x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Fatima Karbou, Florence Rabier, and Catherine Prigent


The aim of this study is to test the feasibility of assimilating microwave observations from the Advanced Microwave Sounding Units (AMSU-A and AMSU-B) through the implementation of an appropriate parameterization of sea ice emissivity. AMSU observations are relevant to the description of air temperature and humidity, and their assimilation into numerical weather prediction (NWP) helps better constrain models in regions where very few observations are assimilated. A sea ice emissivity model suitable for AMSU-A and AMSU-B data is described in this paper and its impact is studied through two assimilation experiments run during the period of the Arctic winter. The first experiment is representative of the operational version of the Météo-France NWP model whereas the second simulation uses the sea ice emissivity parameterization and assimilates a selection of AMSU channels above polar regions. The assimilation of AMSU observations over sea ice is shown to have a significant effect on atmospheric analyses (in particular those of temperature and humidity). The effect on temperature induces a warming in the lower troposphere, especially around 850 hPa. This leads to an increase in the Arctic inversion strength over the ice cap by almost 2 K. An improvement in medium-range forecasts is also noticed when the NWP model assimilates AMSU observations over sea ice.

Full access
Filipe Aires, Francis Marquisseau, Catherine Prigent, and Geneviève Sèze


A statistical cloud classification and cloud mask algorithm is developed based on Advanced Microwave Sounding Unit (AMSU-A and -B) microwave (MW) observations. The visible and infrared data from the Meteosat Third Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) are used to train the microwave classifier. The goal of the MW algorithms is not to fully reproduce this MSG-SEVIRI cloud classification, as the MW observations do not have enough information on clouds to reach this level of precision. The objective is instead to obtain a stand-alone MW cloud mask and classification algorithm that can be used efficiently in forthcoming retrieval schemes of surface or atmospheric parameters from microwave satellite observations. This is an important tool over both ocean and land since the assimilation of the MW observations in the operational centers is independent from the other satellite observations.

Clear sky and low, medium, and opaque–high clouds can be retrieved over ocean and land at a confidence level of more than 80%. An information content analysis shows that AMSU-B provides significant information over both land and ocean, especially for the classification of medium and high clouds, whereas AMSU-A is more efficient over ocean when discriminating clear situations and low clouds.

Full access