Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Chao Li x
  • Journal of Atmospheric and Oceanic Technology x
  • All content x
Clear All Modify Search
Chong Wu, Liping Liu, Xi Liu, Guocui Li, and Chao Chen

Abstract

In the summer of 2016, one phased-array radar and two polarimetric weather radars, representative of advancing radar technology in use in China, jointly collected data in the Foshan area to study severe convective storms in southern China. After an introduction to the technical characteristics and a verification of the radar calibration, the advantages of the abovementioned dual-polarization and phased-array radars are discussed in terms of an observational analysis of a supercell that occurred on 9 May 2016. The polarimetric signatures within the supercell are associated with specific microphysical processes that can reveal different stages of storm evolution. The hydrometeor classification algorithm is a more straightforward and useful method for nowcasting than conventional algorithms, which makes it favorable for further recommendation in China. During the mature and dissipating stages of this supercell, observations of the phased-array radar show detailed changes on short time scales that cannot be observed by parabolic-antenna radars. The initiation and mergers of new convective cells are found in the peak inflow region, and the formation and dissipation of the hook echo are associated with the relative intensities of inflow and outflow. The abovementioned results demonstrate that the phased-array radar and dual-polarization radars recently developed in China are powerful tools to better understand storm evolution for nowcasting and scientific studies.

Full access
Yi Chao, Zhijin Li, John D. Farrara, and Peter Hung

Abstract

A two-dimensional variational data assimilation (2DVAR) method for blending sea surface temperature (SST) data from multiple observing platforms is presented. This method produces continuous fields and has the capability of blending multiple satellite and in situ observations. In addition, it allows specification of inhomogeneous and anisotropic background correlations, which are common features of coastal ocean flows. High-resolution (6 km in space and 6 h in time) blended SST fields for August 2003 are produced for a region off the California coast to demonstrate and evaluate the methodology. A comparison of these fields with independent observations showed root-mean-square errors of less than 1°C, comparable to the errors in conventional SST observations. The blended SST fields also clearly reveal the finescale spatial and temporal structures associated with coastal upwelling, demonstrating their utility in the analysis of finescale flows. With the high temporal resolution, the blended SST fields are also used to describe the diurnal cycle. Potential applications of this SST blending methodology in other coastal regions are discussed.

Full access
Zhijin Li, Yi Chao, James C. McWilliams, and Kayo Ide

Abstract

A three-dimensional variational data assimilation (3DVAR) scheme has been developed within the framework of the Regional Ocean Modeling System (ROMS). This ROMS3DVAR enables the capability of predicting meso- to small-scale variations with temporal scales from hours to days in coastal oceans. To cope with particular difficulties that result from complex coastlines and bottom topography, unbalanced flows, and sparse observations, ROMS3DVAR includes novel strategies. These strategies include the implementation of three-dimensional anisotropic and inhomogeneous error correlations based on a Kronecker product, application of particular weak dynamic constraints, and implementation of efficient and reliable algorithms for minimizing the cost function. The formulation of ROMS3DVAR is presented here, and its implementation off the West Coast is currently under way.

Full access
Xianxin Li, Zhangjun Wang, Libin Du, Xingtao Liu, Xiufen Wang, Chao Chen, Xiangqian Meng, Hui Li, Quanfeng Zhuang, Wei Deng, Xin Pan, and Xinzhao Chu

Abstract

Observations of the atmospheric trace gases are crucial for quality assessment of the human living environment. Multiaxis differential optical absorption spectroscopy (MAX-DOAS) is the most promising candidate to meet the requirements on observations of atmospheric trace gases with high sensitivity, good stability, and a wide range of regional monitoring. The shipborne observations of tropospheric trace gases (NO2, SO2, and O3) over a coastal city, Qingdao, with MAX-DOAS were conducted by a Chinese oceanographic research vessel, XiangYangHong 08 (XYH 08). During the observational campaign, the shipborne MAX-DOAS equipment was used to make anchor measurements for 3 days, and a sailing measurement along Qingdao coast for half an hour. Measurement results are presented for both sailing and anchor point measurements in this paper. Combining geometry characteristic of the monitoring area, it can be concluded from the sailing measurements that the traffic emissions may play an important role in the boundary layer (BL) pollution of a coastal city’s atmosphere. The anchor point measurements showed that the NO2 vertical column density (VCD) mean value of Jiaozhou Bay is about 2.7 times of the value of the Qingdao offshore sea area. Likewise, the tropospheric VCDs of SO2 and O3 have an increase of 30% and 40%, respectively, on 1 September in Jiaozhou Bay, compared to the other 2 days in Qingdao offshore sea area.

Free access