Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Chao-An Chen x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Chia Chou and Chao-An Chen

Abstract

Anthropogenic forcings, such as greenhouse gases and aerosols, are starting to show their influence on the climate, as evidenced by a global warming trend observed in the past century. The weakening of tropical circulation, a consequence of global warming, has also been found in observations and in twenty-first-century climate model simulations. It is a common belief that this weakening of tropical circulation is associated with the fact that global-mean precipitation increases more slowly than water vapor. Here, a new mechanism is proposed for this robust change, which is determined by atmospheric stability associated with the depth of convection. Convection tends to extend higher in a warmer climate because of an uplifting of the tropopause. The higher the convection, the more stable the atmosphere. This leads to a weakening of tropical circulation.

Full access
Chao-An Chen, Chia Chou, and Cheng-Ta Chen

Abstract

From a global point of view, a shift toward more intense precipitation is often found in observations and global warming simulations. However, similar to changes in mean precipitation, these changes associated with precipitation characters, such as intensity and frequency, should vary with space. Based on the classification of the subregions for the tropics in Chou et al., changes in precipitation frequency and intensity and their association with changes in mean precipitation are analyzed on a regional basis in 10 coupled global climate models. Furthermore, mechanisms for these changes are also examined, via the thermodynamic and dynamic contributions.

In general, the increase (decrease) of mean precipitation is mainly attributed to increases (decreases) in the frequency and intensity of almost all strengths of precipitation: that is, light to heavy precipitation. The thermodynamic contribution, which is associated with increased water vapor, is positive to both precipitation frequency and intensity, particularly for precipitation extremes, and varies little with space. On the other hand, the dynamic contribution, which is related to changes in the tropical circulation, is the main process for inducing the spatial variation of changes in precipitation frequency and intensity. Among mechanisms that induce the dynamic contribution, the rich-get-richer mechanism (the dynamic part), ocean feedback, and warm horizontal advection increase precipitation frequency and intensity, while the upped-ante mechanism, the deepening of convection, longwave radiation cooling, and cold horizontal advection tend to reduce precipitation frequency and intensity.

Full access
Chao-An Chen, Jia-Yuh Yu, and Chia Chou

Abstract

Global-warming-induced changes in regional tropical precipitation are usually associated with changes in the tropical circulation, which is a dynamic contribution. This study focuses on the mechanisms of the dynamic contribution that is related to the partition of shallow convection in tropical convection. To understand changes in tropical circulation and its associated mechanisms, 32 coupled global climate models from CMIP3 and CMIP5 were investigated. The study regions are convection zones with positive precipitation anomalies, where both enhanced and reduced ascending motions are found. Under global warming, an upward-shift structure of ascending motion is observed in the entire domain, implying a deepening of convection and a more stable atmosphere, which leads to a weakening of the tropical circulation. In a more detailed examination, areas with enhanced (weakened) ascending motion are associated with more (less) import of moist static energy by a climatologically bottom-heavy (top heavy) structure of vertical velocity, which is similar to a “rich get richer” mechanism. In a warmer climate, different climatological vertical profiles tend to induce different changes in atmospheric stability: the bottom-heavy (top heavy) structure brings a more (less) unstable condition and is favorable (unfavorable) to the strengthening of the convective circulation. The bottom-heavy structure is associated with shallow convection, while the top-heavy structure is usually related to deep convection. This study suggests a hypothesis and a possible linkage for projecting and understanding future circulation change from the current climate: shallow convection will tend to strengthen tropical circulation and enhance upward motion in a future warmer climate.

Full access
Chia Chou, Chao-An Chen, Pei-Hua Tan, and Kuan Ting Chen

Abstract

Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy precipitation but becomes less frequent and weaker for light precipitation. Changes in precipitation frequency and intensity are both controlled by thermodynamic and dynamic components. The thermodynamic component is induced by changes in atmospheric water vapor, while the dynamic component is associated with changes in vertical motion. A set of equations is derived to estimate both thermodynamic and dynamic contributions to changes in frequency and intensity of precipitation, especially for heavy precipitation. In the thermodynamic contribution, increased water vapor reduces the magnitude of the required vertical motion to generate the same strength of precipitation, so precipitation frequency increases. Increased water vapor also intensifies precipitation due to the enhancement of water vapor availability in the atmosphere. In the dynamic contribution, the more stable atmosphere tends to reduce the frequency and intensity of precipitation, except for the heaviest precipitation. The dynamic component strengthens the heaviest precipitation in most climate model simulations, possibly due to a positive convective feedback.

Full access
Chia Chou, J. David Neelin, Chao-An Chen, and Jien-Yi Tu

Abstract

Examining tropical regional precipitation anomalies under global warming in 10 coupled global climate models, several mechanisms are consistently found. The tendency of rainfall to increase in convergence zones with large climatological precipitation and to decrease in subsidence regions—the rich-get-richer mechanism—has previously been examined in different approximations by Chou and Neelin, and Held and Soden. The effect of increased moisture transported by the mean circulation (the “direct moisture effect” or “thermodynamic component” in respective terminology) is relatively robust, while dynamic feedback is poorly understood and differs among models. The argument outlined states that the thermodynamic component should be a good approximation for large-scale averages; this is confirmed for averages across convection zones and descent regions, respectively. Within the convergence zones, however, dynamic feedback can substantially increase or decrease precipitation anomalies. Regions of negative precipitation anomalies within the convergence zones are associated with local weakening of ascent, and some of these exhibit horizontal dry advection associated with the “upped-ante” mechanism. Regions of increased ascent have strong positive precipitation anomalies enhanced by moisture convergence. This dynamic feedback is consistent with reduced gross moist stability due to increased moisture not being entirely compensated by effects of tropospheric warming and a vertical extent of convection. Regions of reduced ascent with positive precipitation anomalies are on average associated with changes in the vertical structure of vertical velocity, which extends to higher levels. This yields an increase in the gross moist stability that opposes ascent. The reductions in ascent associated with gross moist stability and upped-ante effects, respectively, combine to yield reduced ascent averaged across the convergence zones. Over climatological subsidence regions, positive precipitation anomalies can be associated with a convergence zone shift induced locally by anomalous heat flux from the ocean. Negative precipitation anomalies have a contribution from the thermodynamic component but can be enhanced or reduced by changes in the vertical velocity. Regions of enhanced subsidence are associated with an increased outgoing longwave radiation or horizontal cold convection. Reductions of subsidence are associated with changes of the vertical profile of vertical velocity, increasing gross moist stability.

Full access