Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Chung-Hsiung Sui x
  • Years of the Maritime Continent x
  • All content x
Clear All Modify Search
Ching-Shu Hung and Chung-Hsiung Sui


The evolution processes for propagating Madden–Julian oscillations with strong magnitude over the Indian Ocean (IO) and Maritime Continent (MC) are investigated through a diagnosis of ECMWF reanalysis data for November–April 1982–2011. A scale-separated lower-tropospheric (1000–700 hPa) moisture budget is analyzed for four stages of composite life cycle: suppressed, cloud developing, convective, and decaying. Overall, the budgets in the IO and MC are dominated by wave-induced boundary layer convergence in the anomalous easterlies (WC) and advection. Starting from the suppressed stage in the central IO, moistening by WC and advection by easterly anomalies contributes to an initiation of the MJO convection in the western IO while surface evaporation and/or shallow convection moistens the central IO. In the following cloud developing and convective stage in the central IO, moistening by WC and advection by the downstream Kelvin–Rossby wave east of central IO lead to eastward propagation of deep convection. In the MC, the suppressed stage coincides with the convective stage in the central IO that promotes anomalous easterlies, subsidence, and enhanced rain rate over islands. Unlike WC and advective moistening in the IO that both occur in the equatorial zone, advective moistening in MC tends to be negative (positive) on windward (leeward) side of the major islands in the equatorial zone and more organized over the Arafura Sea, conducive to a southward detour of the eastward-propagating MJO.

Open access
Wei-Ting Chen, Shih-Pei Hsu, Yuan-Huai Tsai, and Chung-Hsiung Sui


We studied the scale interactions of the convectively coupled Kelvin waves (KWs) over the South China Sea (SCS) and Maritime Continent (MC) during December 2016. Three KWs were observed near the equator in this month while the Madden–Julian oscillation (MJO) was inactive. The impacts of these KWs on the rainfall variability of various time scales are diagnosed, including synoptic disturbances, diurnal cycle (DC), and the onset of the Australian monsoon. Four interaction events between the KWs and the westward-propagating waves over the off-equatorial regions were examined; two events led to KW enhancements and the other two contributed to the formation of a tropical depression/tropical cyclone. Over the KW convectively active region of the MC, the DC of precipitation was enhanced in major islands and neighboring oceans. Over the land, the DC hot spots were modulated depending on the background winds and the terrain effects. Over the ocean, the “coastal regime” of the DC appeared at specific coastal areas. Last, the Australian summer monsoon onset occurred with the passage of a KW, which provided favorable conditions of low-level westerlies and initial convection over southern MC and the Arafura Sea. This effect may be helped by the warm sea surface temperature anomalies associated with the La Niña condition of this month. The current results showcase that KWs and their associated scale interactions can provide useful references for weather monitoring and forecast of this region when the MJO is absent.

Full access