Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: David A. Marks x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
David J. Lorenz, Jason A. Otkin, Mark Svoboda, Christopher R. Hain, Martha C. Anderson, and Yafang Zhong

Abstract

The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a nondiscrete USDM index that simultaneously 1) represents the dryness/wetness value on a continuum and 2) is most consistent with the time scales and processes of the actual USDM. A continuous USDM representation will facilitate USDM forecasting methods, which will benefit from knowledge of where, within a discrete drought class, the current drought state most probably lies. The continuous USDM is developed such that the actual discrete USDM can be reconstructed by discretizing the continuous USDM based on the 30th, 20th, 10th, 5th, and 2nd percentiles—corresponding with USDM definitions for the D4–D0 drought classes. Anomalies in precipitation, soil moisture, and evapotranspiration over a range of different time scales are used as predictors to estimate the continuous USDM. The methodology is fundamentally probabilistic, meaning that the probability density function (PDF) of the continuous USDM is estimated and therefore the degree of uncertainty in the fit is properly characterized. Goodness-of-fit metrics and direct comparisons between the actual and predicted USDM analyses during different seasons and years indicate that this objective drought classification method is well correlated with the current USDM analyses. In Part II, this continuous USDM index will be used to improve intraseasonal USDM intensification forecasts because it is capable of distinguishing between USDM states that are either far from or near to the next-higher drought category.

Full access
David J. Lorenz, Jason A. Otkin, Mark Svoboda, Christopher R. Hain, Martha C. Anderson, and Yafang Zhong

Abstract

Probabilistic forecasts of U.S. Drought Monitor (USDM) intensification over 2-, 4-, and 8-week time periods are developed based on recent anomalies in precipitation, evapotranspiration, and soil moisture. These statistical forecasts are computed using logistic regression with cross validation. While recent precipitation, evapotranspiration, and soil moisture do provide skillful forecasts, it is found that additional information on the current state of the USDM adds significant skill to the forecasts. The USDM state information takes the form of a metric that quantifies the “distance” from the next-higher drought category using a nondiscrete estimate of the current USDM state. This adds skill because USDM states that are close to the next-higher drought category are more likely to intensify than states that are farther from this threshold. The method shows skill over most of the United States but is most skillful over the north-central United States, where the cross-validated Brier skill score averages 0.20 for both 2- and 4-week forecasts. The 8-week forecasts are less skillful in most locations. The 2- and 4-week probabilities have very good reliability. The 8-week probabilities, on the other hand, are noticeably overconfident. For individual drought events, the method shows the most skill when forecasting high-amplitude flash droughts and when large regions of the United States are experiencing intensifying drought.

Full access
Peter J. Shellito, Sujay V. Kumar, Joseph A. Santanello Jr., Patricia Lawston-Parker, John D. Bolten, Michael H. Cosh, David D. Bosch, Chandra D. Holifield Collins, Stan Livingston, John Prueger, Mark Seyfried, and Patrick J. Starks

Abstract

The utility of hydrologic land surface models (LSMs) can be enhanced by using information from observational platforms, but mismatches between the two are common. This study assesses the degree to which model agreement with observations is affected by two mechanisms in particular: 1) physical incongruities between the support volumes being characterized and 2) inadequate or inconsistent parameterizations of physical processes. The Noah and Noah-MP LSMs by default characterize surface soil moisture (SSM) in the top 10 cm of the soil column. This depth is notably different from the 5-cm (or less) sensing depth of L-band radiometers such as NASA’s Soil Moisture Active Passive (SMAP) satellite mission. These depth inconsistencies are examined by using thinner model layers in the Noah and Noah-MP LSMs and comparing resultant simulations to in situ and SMAP soil moisture. In addition, a forward radiative transfer model (RTM) is used to facilitate direct comparisons of LSM-based and SMAP-based L-band Tb retrievals. Agreement between models and observations is quantified using Kolmogorov–Smirnov distance values, calculated from empirical cumulative distribution functions of SSM and Tb time series. Results show that agreement of SSM and Tb with observations depends primarily on systematic biases, and the sign of those biases depends on the particular subspace being analyzed (SSM or Tb). This study concludes that the role of increased soil layer discretization on simulated soil moisture and Tb is secondary to the influence of component parameterizations, the effects of which dominate systematic differences with observations.

Restricted access
William J. Gutowski Jr., Raymond W. Arritt, Sho Kawazoe, David M. Flory, Eugene S. Takle, Sébastien Biner, Daniel Caya, Richard G. Jones, René Laprise, L. Ruby Leung, Linda O. Mearns, Wilfran Moufouma-Okia, Ana M. B. Nunes, Yun Qian, John O. Roads, Lisa C. Sloan, and Mark A. Snyder

Abstract

This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.

Full access
Rolf H. Reichle, Gabrielle J. M. De Lannoy, Qing Liu, Joseph V. Ardizzone, Andreas Colliander, Austin Conaty, Wade Crow, Thomas J. Jackson, Lucas A. Jones, John S. Kimball, Randal D. Koster, Sarith P. Mahanama, Edmond B. Smith, Aaron Berg, Simone Bircher, David Bosch, Todd G. Caldwell, Michael Cosh, Ángel González-Zamora, Chandra D. Holifield Collins, Karsten H. Jensen, Stan Livingston, Ernesto Lopez-Baeza, José Martínez-Fernández, Heather McNairn, Mahta Moghaddam, Anna Pacheco, Thierry Pellarin, John Prueger, Tracy Rowlandson, Mark Seyfried, Patrick Starks, Zhongbo Su, Marc Thibeault, Rogier van der Velde, Jeffrey Walker, Xiaoling Wu, and Yijian Zeng

Abstract

The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.

Full access