Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: David B. Lobell x
  • Earth Interactions x
  • Land Use and Ecosystems x
  • All content x
Clear All Modify Search
Jeffrey A. Hicke, David B. Lobell, and Gregory P. Asner


Croplands cover large areas of the globe and contribute significantly to the global carbon cycle. However, like other ecosystems, limited information exists on spatially explicit, ground-based estimates of carbon fluxes. In this study, county-level cropland area and harvest information reported in the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) from 1972 to 2001 was utilized to calculate the temporal behavior of net primary production (NPP) for croplands across the United States. Production data for individual crops were converted to estimates of NPP using crop-specific factors. Because NASS does not include all crops of interest during all years, only a crop type in a county estimate was included if the entire time series was complete. Incomplete reporting occurred primarily with hay. Trends in crop area, NPP, and total production (area times NPP) exhibited significant spatial variation. The largest increases in production occurred in the Midwest, Great Plains, and Mississippi River Valley regions. Cropland area exhibited a range of trends from large percent increases in counties across the Great Plains and the West to decreases across the South. Generally, NPP increased in counties throughout the United States and for the country as a whole. It was estimated that total coterminous cropland production increased during 1972–2001 from 0.37 to 0.53 Pg C yr−1, a 40% increase over 1972 values. Since total cropland area changed little during the 30-yr period, production increases were driven primarily by gains in NPP.

Full access