Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: David John Gagne II x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Yingkai Sha, David John Gagne II, Gregory West, and Roland Stull

Abstract

Statistical downscaling (SD) derives localized information from larger-scale numerical models. Convolutional neural networks (CNNs) have learning and generalization abilities that can enhance the downscaling of gridded data (Part I of this study experimented with 2-m temperature). In this research, we adapt a semantic-segmentation CNN, called UNet, to the downscaling of daily precipitation in western North America, from the low resolution (LR) of 0.25° to the high resolution (HR) of 4-km grid spacings. We select LR precipitation, HR precipitation climatology, and elevation as inputs; train UNet over the subset of the south- and central-western United States using Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data from 2015 to 2018, and test it independently in all available domains from 2018 to 2019. We proposed an improved version of UNet, which we call Nest-UNet, by adding deep-layer aggregation and nested skip connections. Both the original UNet and Nest-UNet show generalization ability across different regions and outperform the SD baseline (bias-correction spatial disaggregation), with lower downscaling error and more accurate fine-grained textures. Nest-UNet also shares the highest amount of information with station observations and PRISM, indicating good ability to reduce the uncertainty of HR downscaling targets.

Open access
Yingkai Sha, David John Gagne II, Gregory West, and Roland Stull

Abstract

Many statistical downscaling methods require observational inputs and expert knowledge and thus cannot be generalized well across different regions. Convolutional neural networks (CNNs) are deep-learning models that have generalization abilities for various applications. In this research, we modify UNet, a semantic-segmentation CNN, and apply it to the downscaling of daily maximum/minimum 2-m temperature (TMAX/TMIN) over the western continental United States from 0.25° to 4-km grid spacings. We select high-resolution (HR) elevation, low-resolution (LR) elevation, and LR TMAX/TMIN as inputs; train UNet using Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data over the south- and central-western United States from 2015 to 2018; and test it independently over both the training domains and the northwestern United States from 2018 to 2019. We found that the original UNet cannot generate enough fine-grained spatial details when transferred to the new northwestern U.S. domain. In response, we modified the original UNet by assigning an extra HR elevation output branch/loss function and training the modified UNet to reproduce both the supervised HR TMAX/TMIN and the unsupervised HR elevation. This improvement is named “UNet-Autoencoder (AE).” UNet-AE supports semisupervised model fine-tuning for unseen domains and showed better gridpoint-level performance with more than 10% mean absolute error (MAE) reduction relative to the original UNet. On the basis of its performance relative to the 4-km PRISM, UNet-AE is a good option to provide generalizable downscaling for regions that are underrepresented by observations.

Open access
David John Gagne II, Amy McGovern, Jeffrey B. Basara, and Rodger A. Brown

Abstract

Oklahoma Mesonet surface data and North American Regional Reanalysis data were integrated with the tracks of over 900 tornadic and nontornadic supercell thunderstorms in Oklahoma from 1994 to 2003 to observe the evolution of near-storm environments with data currently available to operational forecasters. These data are used to train a complex data-mining algorithm that can analyze the variability of meteorological data in both space and time and produce a probabilistic prediction of tornadogenesis given variables describing the near-storm environment. The algorithm was assessed for utility in four ways. First, its probability forecasts were scored. The algorithm did produce some useful skill in discriminating between tornadic and nontornadic supercells as well as in producing reliable probabilities. Second, its selection of relevant attributes was assessed for physical significance. Surface thermodynamic parameters, instability, and bulk wind shear were among the most significant attributes. Third, the algorithm’s skill was compared with the skill of single variables commonly used for tornado prediction. The algorithm did noticeably outperform all of the single variables, including composite parameters. Fourth, the situational variations of the predictions from the algorithm were shown in case studies. They revealed instances both in which the algorithm excelled and in which the algorithm was limited.

Full access