Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: David M Schultz x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
David M. Schultz

Abstract

The hypothesis that cumulus congestus clouds in the tropics moisten dry layers above the boundary layer and promote the formation of deep moist convection was tested by Hohenegger and Stevens. This comment asks whether their hypothesis is also true for cumulus congestus clouds and deep moist convection in the midlatitudes. This comment also requests clarification on how their expression for moisture convergence is calculated and used in their article, especially in light of previous studies showing that moisture flux convergence is a less-than-adequate diagnostic for convection initiation and that deep moist convection requires sufficient lift and instability, in addition to sufficient moisture.

Full access
Daniel J. Kirshbaum and David M. Schultz

Abstract

Elongated and quasi-stationary cloud bands capable of producing heavy precipitation have recently been observed in the lee of midlatitude mountain ridges. Herein, idealized explicit-convection simulations are used to investigate such bands. A methodical sampling of environmental parameter space reveals that the bands are favored by a multilayer upstream static-stability profile, with a conditionally unstable midlevel layer overlying an absolutely stable surface-based layer. Such profiles promote the formation of leeside hydraulic jumps, with deep upright ascent that initiates elevated moist convection. Over smooth ridges, isolated bands develop past each ridge end due to a local superposition of cross-barrier and along-barrier pressure gradients. This superposition enhances leeside vertical displacements compared to parcels traversing the ridge midsection. In the Northern Hemisphere, the Coriolis force favors the left band over the right band (relative to the incoming flow) due to opposite-signed relative-vorticity perturbations past the two ridge ends. Whereas the negative vorticity anomaly past the left end enhances forcing for ascent, the positive vorticity anomaly past the right end suppresses it. For the environmental flows considered herein, the simulated bands are the most persistent over medium-height (1.5-km high) ridges, which force stronger leeside ascent than taller or shorter ridges. Over more rugged terrain, additional bands form past deep gaps or valleys, again due to a local superposition of horizontal pressure gradients. In contrast to some recent studies of orographic cloud bands, these simulated bands owe their existence to the release of moist static instability, indicating that neither slantwise nor inertial instability is required for their formation.

Full access
Katharine M. Kanak, Jerry M. Straka, and David M. Schultz

Abstract

Mammatus are hanging lobes on the underside of clouds. Although many different mechanisms have been proposed for their formation, none have been rigorously tested. In this study, three-dimensional numerical simulations of mammatus on a portion of a cumulonimbus cirruslike anvil are performed to explore some of the dynamic and microphysical factors that affect mammatus formation and evolution. Initial conditions for the simulations are derived from observed thermodynamic soundings. Five observed soundings are chosen—four were associated with visually observed mammatus and one was not. Initial microphysical conditions in the simulations are consistent with in situ observations of cumulonimbus anvil and mammatus. Mammatus form in the four model simulations initialized with the soundings for which mammatus were observed, whereas mammatus do not form in the model simulation initialized with the no-mammatus sounding. Characteristics of the modeled mammatus compare favorably to previously published mammatus observations.

Three hypothesized formation mechanisms for mammatus are tested: cloud-base detrainment instability, fallout of hydrometeors from cloud base, and sublimation of ice hydrometeors below cloud base. For the parameters considered, cloud-base detrainment instability is a necessary, but not sufficient, condition for mammatus formation. Mammatus can form without fallout, but not without sublimation. All the observed soundings for which mammatus were observed feature a dry-adiabatic subcloud layer of varying depth with low relative humidity, which supports the importance of sublimation to mammatus formation.

Full access
David B. Mechem, Yefim L. Kogan, and David M. Schultz

Abstract

More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus.

Full access
David B. Mechem, Yefim L. Kogan, and David M. Schultz

Abstract

Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms.

Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment.

Full access
David M. Schultz, Robert M. Rauber, and Kenneth F. Heideman
Full access
Callum F. Thompson, David M. Schultz, and Geraint Vaughan

Abstract

A climatology of tropospheric inertial instability is constructed using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) at 250, 500, and 850 hPa. For each level, two criteria are used. The first criterion is the traditional criterion of absolute vorticity that is opposite in sign to the local Coriolis parameter. The second criterion, referred to as the gradient criterion, is the traditional criterion with an added term incorporating flow curvature. Both criteria show that instability, on all pressure levels, occurs most frequently in the tropics and decreases toward the poles. Compared to the traditional criterion, the gradient criterion diagnoses instability much more frequently outside the tropics and less frequently near the equator. The global distribution of inertial instability also shows many local maxima in the occurrence of instability. A sample of these local maxima is investigated further by constructing composites of the synoptic-scale flow associated with instability. The composites show that instability occurs in association with cross-equatorial flow in the North Atlantic Ocean, the Somali jet, tip jets off northern Madagascar, the western Pacific subtropical high, gap winds across Central America, upper-level ridging over western North America, and the North Atlantic polar jet. Furthermore, relatively long-lived synoptic-scale regions of instability are found within the midlatitude jet streams.

Full access
David M. Schultz, Timothy M. DelSole, Robert M. Rauber, and Walter A. Robinson
Open access
David M. Schultz, Adam J. Durant, Jerry M. Straka, and Timothy J. Garrett

Abstract

Doswell has proposed a mechanism for mammatus called double-diffusive convection, the mechanism responsible for salt fingers in the ocean. The physics of salt fingers and mammatus are different. Unlike the ocean where the diffusivity is related to molecular motions within solution, the hydrometeors in clouds are affected by inertial and gravitational forces. Doswell misinterprets the vertical temperature profiles through mammatus and fails to understand the role of settling in volcanic ash clouds. Furthermore, given that mixing is a much more effective means of transferring heat in the atmosphere and given idealized numerical model simulations of mammatus showing that the destabilizing effect of subcloud sublimation is an effective mechanism for mammatus, this reply argues that double-diffusive convection is unlikely to explain mammatus, either in cumulonimbus anvils or in volcanic ash clouds.

Full access
Roger Marchand, Nathaniel Beagley, Sandra E. Thompson, Thomas P. Ackerman, and David M. Schultz

Abstract

A classification scheme is created to map the synoptic-scale (large scale) atmospheric state to distributions of local-scale cloud properties. This mapping is accomplished by a neural network that classifies 17 months of synoptic-scale initial conditions from the rapid update cycle forecast model into 25 different states. The corresponding data from a vertically pointing millimeter-wavelength cloud radar (from the Atmospheric Radiation Measurement Program Southern Great Plains site at Lamont, Oklahoma) are sorted into these 25 states, producing vertical profiles of cloud occurrence. The temporal stability and distinctiveness of these 25 profiles are analyzed using a bootstrap resampling technique.

A stable-state-based mapping from synoptic-scale model fields to local-scale cloud properties could be useful in three ways. First, such a mapping may improve the understanding of differences in cloud properties between output from global climate models and observations by providing a physical context. Second, this mapping could be used to identify the cause of errors in the modeled distribution of clouds—whether the cause is a difference in state occurrence (the type of synoptic activity) or the misrepresentation of clouds for a particular state. Third, robust mappings could form the basis of a new statistical cloud parameterization.

Full access