Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: David M Schultz x
  • Weather, Climate, and Society x
  • All content x
Clear All Modify Search
Vladimir Janković and David M. Schultz

Abstract

The potential and serious effects of anthropogenic climate change are often communicated through the soundbite that anthropogenic climate change will produce more extreme weather. This soundbite has become popular with scientists and the media to get the public and governments to act against further increases in global temperature and their associated effects through the communication of scary scenarios, what the authors term “atmosfear.” Underlying atmosfear’s appeal, however, are four premises. First, atmosfear reduces the complexity of climate change to an identifiable target in the form of anthropogenically forced weather extremes. Second, anthropogenically driven weather extremes mandate a responsibility to act to protect the planet and society from harmful and increased risk. Third, achieving these ethical goals is predicated on emissions policies. Fourth, the end result of these policies—a nonanthropogenic climate—is assumed to be more benign than an anthropogenically influenced one. Atmosfear oversimplifies and misstates the true state of the science and policy concerns in three ways. First, weather extremes are only one of the predicted effects of climate change and are best addressed by measures other than emission policies. Second, a preindustrial climate may remain a policy goal, but it is unachievable in reality. Third, the damages caused by any anthropogenically driven extremes may be overshadowed by the damages caused by increased exposure and vulnerability to the future risk. In reality, recent increases in damages and losses due to extreme weather events are due to societal factors. Thus, invoking atmosfear through such approaches as attribution science is not an effective means of either stimulating or legitimizing climate policies.

Full access
David M. Schultz and Vladimir Janković
Full access
David M. Schultz, Robert M. Rauber, and Kenneth F. Heideman
Full access
Bogdan Antonescu, Jonathan G. Fairman Jr., and David M. Schultz

Abstract

On 24–25 June 1967 one of the most intense European tornado outbreaks produced extensive damage (approximately 960 houses damaged or destroyed) and resulted in 232 injuries and 15 fatalities in France, Belgium, and the Netherlands. The 24–25 June 1967 tornado outbreak shows that Europe is highly vulnerable to tornadoes. To better understand the impact of European tornadoes and how this impact changed over time, the question is raised, “What would happen if an outbreak similar to the 1967 one occurred 50 years later in 2017 over France, Belgium, and the Netherlands?” Transposing the seven tornado tracks from the June 1967 outbreak over the modern landscape would potentially result in 24 990 buildings being impacted, 255–2580 injuries, and 17–172 fatalities. To determine possible worst-case scenarios, the tornado tracks are moved in a systematic way around their observed positions and positioned over modern maps of buildings and population. The worst-case scenario estimates are 146 222 buildings impacted, 2550–25 440 injuries, and 170–1696 fatalities. These results indicate that the current disaster management policies and mitigation strategies for Europe need to include tornadoes, especially because exposure and tornado risk is anticipated to increase in the near future.

Full access
David M. Schultz, Timothy M. DelSole, Robert M. Rauber, and Walter A. Robinson
Open access
Bogdan Antonescu, David M. Schultz, Hugo M. A. M. Ricketts, and Dragoş Ene

Abstract

Tornadoes and waterspouts have long fascinated humankind through their presence in myths and popular beliefs and originally were believed to have supernatural causes. The first theories explaining weather phenomena as having natural causes were proposed by ancient Greek natural philosophers. Aristotle was one of the first natural philosophers to speculate about the formation of tornadoes and waterspouts in Meteorologica (circa 340 BCE). Aristotle believed that tornadoes and waterspouts were associated with the wind trapped inside the cloud and moving in a circular motion. When the wind escapes the cloud, its descending motion carries the cloud with it, leading to the formation of a typhon (i.e., tornado or waterspout). His theories were adopted and further nuanced by other Greek philosophers such as Theophrastus and Epicurus. Aristotle’s ideas also influenced Roman philosophers such as Lucretius, Seneca, and Pliny the Elder, who further developed his ideas and also added their own speculations (e.g., tornadoes do not need a parent cloud). Almost ignored, Meteorologica was translated into Latin in the twelfth century, initially from an Arabic version, leading to much greater influence over the next centuries and into the Renaissance. In the seventeenth century, the first book-length studies on tornadoes and waterspouts were published in Italy and France, marking the beginning of theoretical and observational studies on these phenomena in Europe. Even if speculations about tornadoes and waterspouts proposed by Greek and Roman authors were cited after the nineteenth century only as historical pieces, core ideas of modern theories explaining these vortices can be traced back to this early literature.

Full access
David M. Schultz, Eve C. Gruntfest, Mary H. Hayden, Charles C. Benight, Sheldon Drobot, and Lindsey R. Barnes

Abstract

One of the goals of the Warning Project is to understand how people receive warnings of hazardous weather and subsequently use this information to make decisions. As part of the project, 519 surveys from Austin, Texas, floodplain residents were collected and analyzed. About 90% of respondents understood that a tornado warning represented a more serious and more likely threat than a tornado watch. Most respondents (86%) were not concerned about a limited number of false alarms or close calls reducing their confidence in future warnings, suggesting no cry-wolf effect. Most respondents reported safe decisions in two hypothetical scenarios: a tornado warning issued while the respondent was home and a tornado visible by the respondent while driving. However, nearly half the respondents indicated that they would seek shelter from a tornado under a highway overpass if they were driving. Despite the limitations of this study, these results suggest that more education is needed on the dangers of highway overpasses as shelter from severe weather.

Restricted access